A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery.

[1]  Eun Seong Lee,et al.  Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. , 2008, Small.

[2]  Alexander V. Kabanov,et al.  Nanogele als pharmazeutische Trgersysteme: winzige Netzwerke mit groen Mglichkeiten , 2009 .

[3]  Kazunori Kataoka,et al.  A protein nanocarrier from charge-conversion polymer in response to endosomal pH. , 2007, Journal of the American Chemical Society.

[4]  Rein V. Ulijn,et al.  Enzyme‐Responsive Polymer Hydrogel Particles for Controlled Release , 2007 .

[5]  Joseph M. DeSimone,et al.  Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. , 2008, Journal of the American Chemical Society.

[6]  Ruth Duncan,et al.  Polymer conjugates as anticancer nanomedicines , 2006, Nature Reviews Cancer.

[7]  V. Torchilin,et al.  "SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. , 2006, Bioconjugate chemistry.

[8]  You Han Bae,et al.  Super pH-sensitive multifunctional polymeric micelle. , 2005, Nano letters.

[9]  Ru Cheng,et al.  Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. , 2009, Angewandte Chemie.

[10]  You Han Bae,et al.  TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[11]  Younan Xia,et al.  Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. , 2009, Nano letters.

[12]  K. Matyjaszewski,et al.  The development of microgels/nanogels for drug delivery applications , 2008 .

[13]  Dongin Kim,et al.  A virus-mimetic nanogel vehicle. , 2008, Angewandte Chemie.

[14]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[15]  S. Ganta,et al.  A review of stimuli-responsive nanocarriers for drug and gene delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[16]  Katharina Landfester,et al.  Interaction of nanoparticles with cells. , 2009, Biomacromolecules.

[17]  N. Nishiyama,et al.  Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm. , 2009, Angewandte Chemie.

[18]  E. Wagner,et al.  Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. , 2008, Journal of the American Chemical Society.

[19]  Maohong Fan,et al.  Charge‐Reversal Drug Conjugate for Targeted Cancer Cell Nuclear Drug Delivery , 2009 .

[20]  C. Tung,et al.  Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. , 2009, Bioconjugate chemistry.

[21]  Yoon Yeo,et al.  Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. , 2009, Molecular pharmaceutics.

[22]  A. Kabanov,et al.  Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[23]  You Han Bae,et al.  Recent progress in tumor pH targeting nanotechnology. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[24]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[25]  Kazunori Kataoka,et al.  Charge-conversion ternary polyplex with endosome disruption moiety: a technique for efficient and safe gene delivery. , 2008, Angewandte Chemie.

[26]  Kazunori Kataoka,et al.  Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. , 2009, Advanced drug delivery reviews.

[27]  A. Kabanov,et al.  Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. , 2009, Angewandte Chemie.

[28]  Ick Chan Kwon,et al.  Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[29]  Vladimir Torchilin,et al.  Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  Atsushi Harada,et al.  Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. , 2003, Angewandte Chemie.

[31]  Eun Seong Lee,et al.  Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[32]  Kenneth A Howard,et al.  Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.