Do Accelerating Turing Machines Compute the Uncomputable?
暂无分享,去创建一个
[1] B. Jack Copeland,et al. Hypercomputation: philosophical issues , 2004, Theor. Comput. Sci..
[2] B. Jack Copeland. Super turing-machines , 1998 .
[3] Cristian S. Calude,et al. A note on accelerated Turing machines , 2010, Mathematical Structures in Computer Science.
[4] Karl Svozil,et al. On the Brightness of the Thomson Lamp: A Prolegomenon to Quantum Recursion Theory , 2009, UC.
[5] Willard Van Orman Quine,et al. Word and Object , 1960 .
[6] Eugene Eric Kim,et al. Ada and the First Computer , 1999 .
[7] B. Jack Copeland,et al. Narrow Versus Wide Mechanism: Including a Re-Examination of Turing’s Views on the Mind-Machine Issue , 2000 .
[8] P. Jourdain. Our Knowledge of the External World as a Field for Scientific Method in Philosophy , 1914, The Mathematical Gazette.
[9] Joan B. Quick,et al. Philosophy of Mathematics and Natural Science , 1950 .
[10] R. M. Blake. The Paradox of Temporal Process , 1926 .
[11] M. Hogarth. Deciding Arithmetic Using SAD Computers , 2004, The British Journal for the Philosophy of Science.
[12] Rónán O'Beirne,et al. The Blackwell Guide to the Philosophy of Computing and Information , 2004 .
[13] J. Earman,et al. Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.
[14] B. Meltzer,et al. Intelligent Machinery-National Physical Laboratory Report , 2011 .
[15] M. Hogarth. Does general relativity allow an observer to view an eternity in a finite time? , 1992 .
[16] J. F. Thomson,et al. Tasks and Super-Tasks , 1954 .
[17] Martin D. Davis,et al. Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.
[18] J. van Leeuwen,et al. Theoretical Computer Science , 2003, Lecture Notes in Computer Science.
[19] Petrus H. Potgieter,et al. Output concepts for accelerated Turing machines , 2010, Natural Computing.
[20] Casiano Rodríguez León,et al. Alan Mathison Turing , 2000 .
[21] B. Copeland,et al. Beyond the universal Turing machine , 1999 .
[22] Ian Stewart,et al. Deciding the undecidable , 1991, Nature.
[23] Bruce MacLennan,et al. Unconventional Computation , 2009, Lecture Notes in Computer Science.
[24] B. J. Copeland,et al. Alan Turing’s Forgotten Ideas in Computer Science , 1999 .
[25] Saul Kripke,et al. A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.
[26] Hajnal Andréka,et al. General relativistic hypercomputing and foundation of mathematics , 2009, Natural Computing.
[27] M. Hogarth. Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[28] B. Jack Copeland,et al. The Broad Conception of Computation , 1997 .
[29] George Boolos,et al. Computability and logic , 1974 .
[30] Bertrand Russell,et al. Our Knowledge of the External World as a Field for Scientific Method in Philosophy. , 1915 .
[31] Paul Benacerraf,et al. Tasks, Super-Tasks, and the Modern Eleatics , 1962 .
[32] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[33] Karl Svozil,et al. Zeno Squeezing of Cellular Automata , 2010, Int. J. Unconv. Comput..
[34] B. Jack Copeland,et al. Accelerating Turing Machines , 2002, Minds and Machines.
[35] Adam Morton,et al. Benacerraf and His Critics , 1996 .
[36] S. Shostak. Philosophy of Mathematics and Natural Science , 2013 .
[37] The Physics of Information , 2008 .
[38] Edwin J. Beggs,et al. Embedding infinitely parallel computation in Newtonian kinematics , 2006, Appl. Math. Comput..
[39] John L. Casti,et al. Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.
[40] B. Jack Copeland,et al. Hypercomputation , 2004, Minds and Machines.
[41] Selim G. Akl,et al. Accelerating machines: a review , 2008, Int. J. Parallel Emergent Distributed Syst..
[42] Oron Shagrir,et al. Super-tasks, accelerating Turing machines and uncomputability , 2004, Theor. Comput. Sci..
[43] Bertrand Russell,et al. Our Knowledge of the External World as a Field for Scientific Method in Philosophy , 1914 .
[44] L. Floridi. Blackwell Guide to the Philosophy of Computing and Information , 2003 .
[45] B. Jack Copeland. Colossus: its origins and originators , 2004, IEEE Annals of the History of Computing.
[46] John D. Norton,et al. Infinite pains: the trouble with supertasks , 1996 .
[47] M. H. A. Newman,et al. Alan Mathison Turing, 1912-1954 , 1955, Biographical Memoirs of Fellows of the Royal Society.
[48] B. Jack Copeland,et al. EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .
[49] H. Weyl. Philosophie der Mathematik und Naturwissenschaft , 1927 .
[50] Wesley C. Salmon,et al. Zeno's Paradoxes, , 1970 .
[51] Oron Shagrir. Supertasks do not increase computational power , 2011, Natural Computing.
[52] I. Pitowsky,et al. The Physical Church Thesis and Physical Computational Complexity , 2013 .
[53] Christos H. Papadimitriou,et al. Elements of the Theory of Computation , 1997, SIGA.
[54] D. M. Hutton,et al. The Essential Turing , 2007 .
[55] Oron Shagrir,et al. Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.
[56] E. B. Davies. Building Infinite Machines , 2001, The British Journal for the Philosophy of Science.
[57] Eric Steinhart,et al. Logically Possible Machines , 2002, Minds and Machines.
[58] K. Svozil. The Church-Turing thesis as a guiding principle for physics , 1997, quant-ph/9710052.
[59] G. Mcrobert. Biographical Memoirs of Fellows of the Royal Society , 1976 .
[60] Emil L. Post. Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.
[61] Rina S. Cohen,et al. omega-Computations on Turing Machines , 1978, Theor. Comput. Sci..
[62] Oron Shagrir,et al. Physical Computation: How General are Gandy’s Principles for Mechanisms? , 2007, Minds and Machines.
[63] A. M. Turing,et al. Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.
[64] B. Jack Copeland,et al. Turing’s O-machines, Searle, Penrose and the brain , 1998 .
[65] Joel David Hamkins,et al. Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.