Do Accelerating Turing Machines Compute the Uncomputable?

Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term “accelerating Turing machine” is used to refer to two very different species of accelerating machine, which we call end-stage-in and end-stage-out machines, respectively. We argue that end-stage-in accelerating machines are not Turing machines at all. We then present two differing conceptions of computation, the internal and the external, and introduce the notion of an epistemic embedding of a computation. We argue that no accelerating Turing machine computes the halting function in the internal sense. Finally, we distinguish between two very different conceptions of the Turing machine, the purist conception and the realist conception; and we argue that Turing himself was no subscriber to the purist conception. We conclude that under the realist conception, but not under the purist conception, an accelerating Turing machine is able to compute the halting function in the external sense. We adopt a relatively informal approach throughout, since we take the key issues to be philosophical rather than mathematical.

[1]  B. Jack Copeland,et al.  Hypercomputation: philosophical issues , 2004, Theor. Comput. Sci..

[2]  B. Jack Copeland Super turing-machines , 1998 .

[3]  Cristian S. Calude,et al.  A note on accelerated Turing machines , 2010, Mathematical Structures in Computer Science.

[4]  Karl Svozil,et al.  On the Brightness of the Thomson Lamp: A Prolegomenon to Quantum Recursion Theory , 2009, UC.

[5]  Willard Van Orman Quine,et al.  Word and Object , 1960 .

[6]  Eugene Eric Kim,et al.  Ada and the First Computer , 1999 .

[7]  B. Jack Copeland,et al.  Narrow Versus Wide Mechanism: Including a Re-Examination of Turing’s Views on the Mind-Machine Issue , 2000 .

[8]  P. Jourdain Our Knowledge of the External World as a Field for Scientific Method in Philosophy , 1914, The Mathematical Gazette.

[9]  Joan B. Quick,et al.  Philosophy of Mathematics and Natural Science , 1950 .

[10]  R. M. Blake The Paradox of Temporal Process , 1926 .

[11]  M. Hogarth Deciding Arithmetic Using SAD Computers , 2004, The British Journal for the Philosophy of Science.

[12]  Rónán O'Beirne,et al.  The Blackwell Guide to the Philosophy of Computing and Information , 2004 .

[13]  J. Earman,et al.  Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.

[14]  B. Meltzer,et al.  Intelligent Machinery-National Physical Laboratory Report , 2011 .

[15]  M. Hogarth Does general relativity allow an observer to view an eternity in a finite time? , 1992 .

[16]  J. F. Thomson,et al.  Tasks and Super-Tasks , 1954 .

[17]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[18]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[19]  Petrus H. Potgieter,et al.  Output concepts for accelerated Turing machines , 2010, Natural Computing.

[20]  Casiano Rodríguez León,et al.  Alan Mathison Turing , 2000 .

[21]  B. Copeland,et al.  Beyond the universal Turing machine , 1999 .

[22]  Ian Stewart,et al.  Deciding the undecidable , 1991, Nature.

[23]  Bruce MacLennan,et al.  Unconventional Computation , 2009, Lecture Notes in Computer Science.

[24]  B. J. Copeland,et al.  Alan Turing’s Forgotten Ideas in Computer Science , 1999 .

[25]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[26]  Hajnal Andréka,et al.  General relativistic hypercomputing and foundation of mathematics , 2009, Natural Computing.

[27]  M. Hogarth Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[28]  B. Jack Copeland,et al.  The Broad Conception of Computation , 1997 .

[29]  George Boolos,et al.  Computability and logic , 1974 .

[30]  Bertrand Russell,et al.  Our Knowledge of the External World as a Field for Scientific Method in Philosophy. , 1915 .

[31]  Paul Benacerraf,et al.  Tasks, Super-Tasks, and the Modern Eleatics , 1962 .

[32]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[33]  Karl Svozil,et al.  Zeno Squeezing of Cellular Automata , 2010, Int. J. Unconv. Comput..

[34]  B. Jack Copeland,et al.  Accelerating Turing Machines , 2002, Minds and Machines.

[35]  Adam Morton,et al.  Benacerraf and His Critics , 1996 .

[36]  S. Shostak Philosophy of Mathematics and Natural Science , 2013 .

[37]  The Physics of Information , 2008 .

[38]  Edwin J. Beggs,et al.  Embedding infinitely parallel computation in Newtonian kinematics , 2006, Appl. Math. Comput..

[39]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[40]  B. Jack Copeland,et al.  Hypercomputation , 2004, Minds and Machines.

[41]  Selim G. Akl,et al.  Accelerating machines: a review , 2008, Int. J. Parallel Emergent Distributed Syst..

[42]  Oron Shagrir,et al.  Super-tasks, accelerating Turing machines and uncomputability , 2004, Theor. Comput. Sci..

[43]  Bertrand Russell,et al.  Our Knowledge of the External World as a Field for Scientific Method in Philosophy , 1914 .

[44]  L. Floridi Blackwell Guide to the Philosophy of Computing and Information , 2003 .

[45]  B. Jack Copeland Colossus: its origins and originators , 2004, IEEE Annals of the History of Computing.

[46]  John D. Norton,et al.  Infinite pains: the trouble with supertasks , 1996 .

[47]  M. H. A. Newman,et al.  Alan Mathison Turing, 1912-1954 , 1955, Biographical Memoirs of Fellows of the Royal Society.

[48]  B. Jack Copeland,et al.  EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .

[49]  H. Weyl Philosophie der Mathematik und Naturwissenschaft , 1927 .

[50]  Wesley C. Salmon,et al.  Zeno's Paradoxes, , 1970 .

[51]  Oron Shagrir Supertasks do not increase computational power , 2011, Natural Computing.

[52]  I. Pitowsky,et al.  The Physical Church Thesis and Physical Computational Complexity , 2013 .

[53]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[54]  D. M. Hutton,et al.  The Essential Turing , 2007 .

[55]  Oron Shagrir,et al.  Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.

[56]  E. B. Davies Building Infinite Machines , 2001, The British Journal for the Philosophy of Science.

[57]  Eric Steinhart,et al.  Logically Possible Machines , 2002, Minds and Machines.

[58]  K. Svozil The Church-Turing thesis as a guiding principle for physics , 1997, quant-ph/9710052.

[59]  G. Mcrobert Biographical Memoirs of Fellows of the Royal Society , 1976 .

[60]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[61]  Rina S. Cohen,et al.  omega-Computations on Turing Machines , 1978, Theor. Comput. Sci..

[62]  Oron Shagrir,et al.  Physical Computation: How General are Gandy’s Principles for Mechanisms? , 2007, Minds and Machines.

[63]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[64]  B. Jack Copeland,et al.  Turing’s O-machines, Searle, Penrose and the brain , 1998 .

[65]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.