ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions

Alloy cluster expansions (CEs) provide an accurate and computationally efficient mapping of the potential energy surface of multi-component systems that enables comprehensive sampling of the many-dimensional configuration space. Here, integrated cluster expansion toolkit (ICET), a flexible, extensible, and computationally efficient software package, is introduced for the construction and sampling of CEs. ICET is largely written in Python for easy integration in comprehensive workflows, including first-principles calculations for the generation of reference data and machine learning libraries for training and validation. The package enables training using a variety of linear regression algorithms with and without regularization, Bayesian regression, feature selection, and cross-validation. It also provides complementary functionality for structure enumeration and mapping as well as data management and analysis. Potential applications are illustrated by two examples, including the computation of the phase diagram of a prototypical metallic alloy and the analysis of chemical ordering in an inorganic semiconductor.

[1]  B. Sadigh,et al.  Calculation of excess free energies of precipitates via direct thermodynamic integration across phase boundaries , 2011, 1111.1880.

[2]  Tim Mueller,et al.  Ab initio determination of structure-property relationships in alloy nanoparticles , 2012 .

[3]  Tim Mueller,et al.  Effect of particle size on hydrogen release from sodium alanate nanoparticles. , 2010, ACS nano.

[4]  K. Jacobsen,et al.  Rich Ground-State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters. , 2017, Physical review letters.

[5]  William F. Schneider,et al.  Ordering and Oxygen Adsorption in Au–Pt/Pt(111) Surface Alloys , 2011 .

[6]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[7]  G. Hwang,et al.  Atomic Arrangements of AuPt/Pt(111) and AuPd/Pd(111) Surface Alloys: A Combined Density Functional Theory and Monte Carlo Study , 2010 .

[8]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[9]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[10]  Ctirad Uher,et al.  Structural order-disorder transitions and phonon conductivity of partially filled skutterudites. , 2010, Physical review letters.

[11]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[12]  S. Dacek,et al.  Finding and proving the exact ground state of a generalized Ising model by convex optimization and MAX-SAT , 2016, 1604.06722.

[13]  W. Schneider,et al.  Comparison of cluster expansion fitting algorithms for interactions at surfaces , 2015 .

[14]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[15]  P. Erhart,et al.  Understanding Chemical Ordering in Intermetallic Clathrates from Atomic Scale Simulations , 2017 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  R. Forcade,et al.  Generating derivative structures from multilattices: Algorithm and application to hcp alloys , 2009 .

[18]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[19]  J. M. Cowley X‐Ray Measurement of Order in Single Crystals of Cu3Au , 1950 .

[20]  Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra , 2011, 1107.4081.

[21]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[22]  Gerbrand Ceder,et al.  First-principles alloy theory in oxides , 2000 .

[23]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[24]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[25]  G. Ceder,et al.  Vibrational thermodynamics: coupling of chemical order and size effects , 2000 .

[26]  R. Forcade,et al.  UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input , 2009 .

[27]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  S. Müller,et al.  Predicting the segregation profile of the Pt25Rh75(100) surface from first-principles , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[31]  Tim Mueller,et al.  Rational Design of Pt3Ni Surface Structures for the Oxygen Reduction Reaction , 2015 .

[32]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[33]  Gerbrand Ceder,et al.  Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li$_x$FePO$_4$ , 2006 .

[34]  B. Iversen,et al.  Thermoelectric clathrates of type I. , 2010, Dalton transactions.

[35]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[36]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[37]  J. H. Roudebush,et al.  Neutron diffraction study of the type I clathrate Ba8Al(x)Si(46-x): site occupancies, cage volumes, and the interaction between the guest and the host framework. , 2012, Inorganic chemistry.

[38]  Gus L. W. Hart,et al.  Cluster expansion made easy with Bayesian compressive sensing , 2013 .

[39]  Lance J. Nelson,et al.  Compressive sensing as a paradigm for building physics models , 2013 .

[40]  C. Draxl,et al.  Predicting Ground-State Configurations and Electronic Properties of the Thermoelectric Clathrates Ba8AlxSi46–x and Sr8AlxSi46–x , 2017, 1708.08126.

[41]  Helmut Dosch,et al.  Spontaneous L12 Order at Ni90Al10(110) Surfaces , 2001 .

[42]  R. Drautz,et al.  Spontaneous L1(2) order at Ni(90)Al(10)(110) surfaces: an x-ray and first-principles-calculation study. , 2001, Physical review letters.

[43]  McCormack,et al.  Theoretical study of alloy phase stability in the Cd-Mg system. , 1993, Physical review. B, Condensed matter.

[44]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[45]  Tim Mueller,et al.  Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions , 2018, The Journal of Physical Chemistry C.

[46]  Kewu Bai,et al.  A comprehensive search for stable Pt-Pd nanoalloy configurations and their use as tunable catalysts. , 2012, Nano letters.

[47]  Stefano Curtarolo,et al.  Surface segregation in nanoparticles from first principles: The case of FePt , 2009, 0905.2917.

[48]  Lin-Lin Wang,et al.  Configurational thermodynamics of alloyed nanoparticles with adsorbates. , 2014, Nano letters.

[49]  Anton Van der Ven,et al.  Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods , 2018 .

[50]  P. Erhart,et al.  Optimization of the Thermoelectric Power Factor: Coupling between Chemical Order and Transport Properties , 2016 .

[51]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[53]  P. Erhart,et al.  Thermal conductivity in intermetallic clathrates: A first-principles perspective , 2018, Physical Review B.

[54]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[55]  Fredrik Eriksson,et al.  The Hiphive Package for the Extraction of High‐Order Force Constants by Machine Learning , 2018, Advanced Theory and Simulations.

[56]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[57]  Yoshiyuki Kawazoe,et al.  Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene , 2003 .

[58]  Anton Van der Ven,et al.  First-Principles Statistical Mechanics of Multicomponent Crystals , 2018, Annual Review of Materials Research.

[59]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[60]  P. Hyldgaard,et al.  Finite-temperature properties of nonmagnetic transition metals: Comparison of the performance of constraint-based semilocal and nonlocal functionals , 2016, 1612.00425.

[61]  Gus L. W. Hart,et al.  Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys , 2005 .