Using image analysis for lumbersize control measurements

Abstract An optical imaging system is proposed for monitoring thickness or width for onlinesize control in lumber production. Adaptations required to convert a general image analysis algorithm to this specific application are presented to illustrate the difficulty associated with applying imaging techniques to wood products processes. Several images containing common features that interfere with standard imaging techniques are used to illustrate the effects of key algorithm modifications and additions as well as parameter changes. Success with these images indicates that the proposed on-line system is feasible.

[1]  Peter de Souza,et al.  Edge detection using sliding statistical tests , 1983, Comput. Vis. Graph. Image Process..

[2]  M. E. Jernigan,et al.  Hierarchical edge detection , 1988, Comput. Vis. Graph. Image Process..

[3]  Harry Wechsler,et al.  Edge detection by associative mapping , 1989, Pattern Recognit..

[4]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[5]  R A Kirsch,et al.  Computer determination of the constituent structure of biological images. , 1971, Computers and biomedical research, an international journal.

[6]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[7]  Manfred H. Hueckel A Local Visual Operator Which Recognizes Edges and Lines , 1973, JACM.

[8]  Jong-Sen Lee Speckle suppression and analysis for synthetic aperture radar images , 1986 .

[9]  Terrance L. Huntsberger,et al.  Color edge detection , 1985, Pattern Recognit. Lett..

[10]  Jong-Sen Lee,et al.  Digital image smoothing and the sigma filter , 1983, Comput. Vis. Graph. Image Process..

[11]  S. Shapiro Transformations for the Computer Detection of Curves in Noisy Pictures , 1975 .

[12]  Amlan Kundu Robust edge detection , 1990, Pattern Recognit..

[13]  Sankar K. Pal,et al.  Thresholding for edge detection using human psychovisual phenomena , 1986, Pattern Recognit. Lett..

[14]  King-Sun Fu,et al.  Image segmentation by syntactic method , 1987, Pattern Recognit..

[15]  Gary Mastin,et al.  Adaptive filters for digital image noise smoothing: An evaluation , 1985, Comput. Vis. Graph. Image Process..

[16]  Thomas S. Huang,et al.  Nonparametric tests for edge detection in noise , 1986, Pattern Recognit..

[17]  G. S. Robinson Edge detection by compass gradient masks , 1977 .

[18]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[19]  John F. Haddon,et al.  Generalised threshold selection for edge detection , 1988, Pattern Recognit..

[20]  Bernard Gimonet,et al.  SAR Data Filtering for Classification , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[21]  J. F. Brenner,et al.  Two graph searching techniques for boundary finding in white blood cell images. , 1978, Computers in biology and medicine.

[22]  Michel Levy A new theoretical approach to relaxation, application to edge detection , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[23]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[24]  Jong-Sen Lee,et al.  A simple speckle smoothing algorithm for synthetic aperture radar images , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Sankar K. Pal,et al.  On Edge Detection of X-Ray Images Using Fuzzy Sets , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Yoram Yakimovsky,et al.  Boundary and Object Detection in Real World Images , 1974, JACM.

[27]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  Jun S. Huang,et al.  Statistical theory of edge detection , 1988, Comput. Vis. Graph. Image Process..

[29]  Nello Zuech Gaging with Vision Systems , 1987 .

[30]  Guner S. Robinson Color Edge Detection , 1977 .

[31]  Roland T. Chin,et al.  Quantitative evaluation of some edge-preserving noise-smoothing techniques , 1983, Comput. Vis. Graph. Image Process..

[32]  Martin D. Levine,et al.  Vision in Man and Machine , 1985 .

[33]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[34]  Lucas J. van Vliet,et al.  A nonlinear laplace operator as edge detector in noisy images , 1989, Comput. Vis. Graph. Image Process..

[35]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Ludwik Kurz,et al.  Edge detection in correlated noise using latin square masks , 1988, Pattern Recognit..

[37]  R. Haralick Edge and region analysis for digital image data , 1980 .

[38]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Jack Sklansky,et al.  Finding circles by an array of accumulators , 1975, Commun. ACM.

[40]  Terence D. Brown,et al.  Lumber size control , 1986 .

[41]  Masatsugu Kidode,et al.  A New Edge Detection Technique and Its Implementation , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Azriel Rosenfeld,et al.  An Application of Relaxation Labeling to Line and Curve Enhancement , 1977, IEEE Transactions on Computers.

[43]  Akira Shiozaki,et al.  Edge extraction using entropy operator , 1986, Comput. Vis. Graph. Image Process..

[44]  Jong-Sen Lee,et al.  Segmentation of SAR images , 1989 .

[45]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[46]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[47]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.