Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
暂无分享,去创建一个
Wolfram Wiesemann | Viet Anh Nguyen | Daniel Kuhn | Soroosh Shafieezadeh-Abadeh | Man-Chung Yue | Viet Anh Nguyen | D. Kuhn | Man-Chung Yue | W. Wiesemann | Soroosh Shafieezadeh-Abadeh
[1] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[2] Suvrit Sra,et al. First-order Methods for Geodesically Convex Optimization , 2016, COLT.
[3] Jinbo Bi,et al. Support Vector Classification with Input Data Uncertainty , 2004, NIPS.
[4] Suvrit Sra,et al. Conic Geometric Optimization on the Manifold of Positive Definite Matrices , 2013, SIAM J. Optim..
[5] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[6] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[7] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[8] C. Atkinson. Rao's distance measure , 1981 .
[9] Silvere Bonnabel,et al. Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..
[10] David R. Cox,et al. A return to an old paper: ‘Tests of separate families of hypotheses’ , 2013 .
[11] Andreas Krause,et al. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.
[12] Suvrit Sra,et al. Fast stochastic optimization on Riemannian manifolds , 2016, ArXiv.
[13] Brigitte Maier,et al. Fundamentals Of Differential Geometry , 2016 .
[14] Hongdong Li,et al. Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.
[15] Marc Arnaudon,et al. Riemannian Medians and Means With Applications to Radar Signal Processing , 2013, IEEE Journal of Selected Topics in Signal Processing.
[16] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[17] Akiko Takeda,et al. Optimistic Robust Optimization With Applications To Machine Learning , 2017, ArXiv.
[18] L. Campbell. An extended Čencov characterization of the information metric , 1986 .
[19] D. Cox. Tests of Separate Families of Hypotheses , 1961 .
[20] Asuka Takatsu. Wasserstein geometry of Gaussian measures , 2011 .
[21] S. Wood. Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.
[22] David T. Frazier,et al. Bayesian Synthetic Likelihood , 2017, 2305.05120.
[23] C. Villani. Optimal Transport: Old and New , 2008 .
[24] Nando de Freitas,et al. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.
[25] Teng Zhang. Robust subspace recovery by geodesically convex optimization , 2012, 1206.1386.
[26] G. McLachlan. Discriminant Analysis and Statistical Pattern Recognition , 1992 .
[27] L. Skovgaard. A Riemannian geometry of the multivariate normal model , 1984 .
[28] Jonathan H. Manton,et al. Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices , 2015, IEEE Transactions on Information Theory.
[29] Michael I. Jordan,et al. Averaging Stochastic Gradient Descent on Riemannian Manifolds , 2018, COLT.
[30] Ronald Schoenberg,et al. Constrained Maximum Likelihood , 1997 .
[31] D. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas , 2009 .
[32] Martin Bauer,et al. Uniqueness of the Fisher–Rao metric on the space of smooth densities , 2014, 1411.5577.
[33] John M. Lee. Riemannian Manifolds: An Introduction to Curvature , 1997 .
[34] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[35] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[36] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[37] Nisheeth K. Vishnoi,et al. On Geodesically Convex Formulations for the Brascamp-Lieb Constant , 2018, APPROX-RANDOM.
[38] Nicolas Boumal,et al. Simple Algorithms for Optimization on Riemannian Manifolds with Constraints , 2019, Applied Mathematics & Optimization.
[39] Jefferson G. Melo,et al. Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds , 2016, Journal of Optimization Theory and Applications.
[40] Richard P. Savage. The space of positive definite matrices and Gromov’s invariant , 1982 .
[41] Sébastien Bubeck,et al. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..
[42] Xavier Pennec,et al. A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.
[43] R. Bhatia. Positive Definite Matrices , 2007 .
[44] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[45] Suvrit Sra,et al. An Estimate Sequence for Geodesically Convex Optimization , 2018, COLT.
[46] Wolfram Wiesemann,et al. Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation , 2019, NeurIPS.
[47] R. Kass,et al. Geometrical Foundations of Asymptotic Inference , 1997 .
[48] Daniel Kuhn,et al. Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator , 2018, Oper. Res..
[49] Rémi Munos,et al. From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning , 2014, Found. Trends Mach. Learn..
[50] L. F. Prudente,et al. Gradient Method for Optimization on Riemannian Manifolds with Lower Bounded Curvature , 2019, SIAM J. Optim..
[51] Charles E. Heckler,et al. Applied Multivariate Statistical Analysis , 2005, Technometrics.
[52] Fatih Murat Porikli,et al. Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.