Numerical methods for the simulation of the settling of flocculated suspensions
暂无分享,去创建一个
Knut-Andreas Lie | Steinar Evje | Raimund Bürger | K. Karlsen | S. Evje | Knut-Andreas Lie | R. Bürger | K. Hvistendahl Karlsen
[1] G. J. Kynch. A theory of sedimentation , 1952 .
[2] J. R. Philip,et al. Macroscopic analysis of the behavior of colloidal suspensions , 1982 .
[3] N. Risebro. A front-tracking alternative to the random choice method , 1993 .
[4] Raimund Bürger,et al. Settling velocities of particulate systems: 9. Phenomenological theory of sedimentation processes: numerical simulation of the transient behaviour of flocculated suspensions in an ideal batch or continuous thickener , 1999 .
[5] Gerard L. G. Sleijpen,et al. Recent advances in numerical methods and applications II , 1999 .
[6] Stefan Diehl,et al. A conservation Law with Point Source and Discontinuous Flux Function Modelling Continuous Sedimentation , 1996, SIAM J. Appl. Math..
[7] Fernando Concha,et al. Settling velocities of particulate systems, 7. Kynch sedimentation processes: continuous thickening , 1992 .
[8] Stefan Diehl,et al. On scalar conservation laws with point source and discontinuous flux function , 1995 .
[9] Chi Tien,et al. Batch sedimentation calculations — the effect of compressible sediment , 1992 .
[10] C. Petty,et al. Continuous sedimentation of a suspension with a nonconvex flux law , 1975 .
[11] Wolfgang L. Wendland,et al. Control of continuous sedimentation of ideal suspensions as an initial and boundary value problem , 1990 .
[12] R. Bürger,et al. Mathematical model and numerical simulation of the settling of flocculated suspensions , 1998 .
[13] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[14] W. Wendland,et al. Existence, Uniqueness, and Stability of Generalized Solutions of an Initial-Boundary Value Problem for a Degenerating Quasilinear Parabolic Equation☆ , 1998 .
[15] K. Karlsen,et al. The corrected operator splitting approach applied to a nonlinear advection-diffusion problem , 1998 .
[16] A. S. Mujumdar,et al. Sedimentation of Small Particles in a Viscous Fluid , 1996 .
[17] R. L. Schiffman,et al. A NOTE ON SEDIMENTATION AND CONSOLIDATION , 1985 .
[18] R. Bürger,et al. Sedimentation and Thickening : Phenomenological Foundation and Mathematical Theory , 1999 .
[19] Fernando Concha,et al. On the construction of global weak solutions in the Kynch theory of sedimentation , 1988 .
[20] W. Wendland,et al. Entropy boundary and jump conditions in the theory of sedimentation with compression , 1998 .
[21] Wolfgang L. Wendland,et al. Global weak solutions to the problem of continuous sedimentation of an ideal suspension , 1990 .
[22] H. Shodja,et al. Numerical analysis of sedimentation and consolidation by the moving finite element method , 1993 .
[23] R. Whitmore,et al. A generalized theory of sedimentation , 1958 .
[24] Kerry A. Landman,et al. Compressive yield stress of flocculated suspensions: Determination via experiment , 1996 .
[25] Moshe Sheintuch,et al. Steady state analysis of a continuous clarifier‐thickener system , 1986 .
[26] L. Holden,et al. A NUMERICAL METHOD FOR FIRST ORDER NONLINEAR SCALAR CONSERVATION LAWS IN ONE-DIMENSION , 1988 .
[27] Stefan Diehl. Dynamic and Steady-State Behavior of Continuous Sedimentation , 1997, SIAM J. Appl. Math..
[28] Edwin D. Mares,et al. On S , 1994, Stud Logica.
[29] Antonio Fasano,et al. Filtration in Porous Media and Industrial Application , 2001 .
[30] Kerry A. Landman,et al. Solid/liquid separation of flocculated suspensions , 1994 .
[31] B. M. Fulk. MATH , 1992 .
[32] R. Bürger,et al. Wave Propagation Phenomena in the Theory of Sedimentation , 1998 .
[33] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[34] Dimitri Gidaspow,et al. Hydrodynamics of sedimentation of multisized particles , 1987 .
[35] R. LeVeque. Numerical methods for conservation laws , 1990 .
[36] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .