Retrieval Survey of Metals in Six Ultrahot Jupiters: Trends in Chemistry, Rain-out, Ionization, and Atmospheric Dynamics

Ground-based high-resolution spectroscopy (HRS) has detected numerous chemical species and atmospheric dynamics in exoplanets, most notably ultrahot Jupiters (UHJs). However, quantitative estimates on abundances have been challenging but are essential for accurate comparative characterization and to determine formation scenarios. In this work, we retrieve the atmospheres of six UHJs (WASP-76 b, MASCARA-4 b, MASCARA-2 b, WASP-121 b, HAT-P-70 b, and WASP-189 b) with ESPRESSO and HARPS-N/HARPS observations, exploring trends in eleven neutral species and dynamics. While Fe abundances agree well with stellar values, Mg, Ni, Cr, Mn, and V show more variation, highlighting the difficulty in using a single species as a proxy for metallicity. We find that Ca, Na, Ti, and TiO are underabundant, potentially due to ionization and/or nightside rain-out. Our retrievals also show that relative abundances between species are more robust, consistent with previous works. We perform spatially resolved and phase-resolved retrievals for WASP-76 b and WASP-121 b given their high signal-to-noise observations, and find the chemical abundances in each of the terminator regions are broadly consistent. We additionally constrain dynamics for our sample through Doppler shifts and broadening of the planetary signals during the primary eclipse, with median blueshifts between ∼0.9 and 9.0 km s−1 due to day–night winds. Furthermore, we constrain spectroscopic masses for MASCARA-2 b and HAT-P-70 b consistent with their known upper limits, but we note that these may be biased due to degeneracies. This work highlights the importance of future HRS studies to further probe differences and trends between exoplanets.

[1]  N. Gibson,et al.  High-resolution atmospheric retrievals of WASP-121b transmission spectroscopy with ESPRESSO: Consistent relative abundance constraints across multiple epochs and instruments , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  G. Blake,et al.  Breaking Degeneracies in Formation Histories by Measuring Refractory Content in Gas Giants , 2022, The Astrophysical Journal.

[3]  J. Patience,et al.  The Roasting Marshmallows Program with IGRINS on Gemini South I: Composition and Climate of the Ultrahot Jupiter WASP-18 b , 2022, The Astronomical Journal.

[4]  S. Czesla,et al.  Atmospheric characterization of the ultra-hot Jupiter WASP-33b. Detection of Ti and V emission lines and retrieval of a broadened line profile , 2022, Astronomy & Astrophysics.

[5]  R. Helled,et al.  Constraining the origin of giant exoplanets via elemental abundance measurements , 2022, Astronomy & Astrophysics.

[6]  S. Udry,et al.  Transmission spectroscopy of the ultra-hot Jupiter MASCARA-4 b. Disentangling the hydrostatic and exospheric regimes of ultra-hot Jupiters , 2022, Astronomy & Astrophysics.

[7]  J. Bean,et al.  Unifying High- and Low-resolution Observations to Constrain the Dayside Atmosphere of KELT-20b/MASCARA-2b , 2022, The Astronomical Journal.

[8]  I. Snellen,et al.  Spatially-resolving the terminator: Variation of Fe, temperature and winds in WASP-76 b across planetary limbs and orbital phase , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  M. Osorio,et al.  Transmission spectroscopy of MASCARA-1b with ESPRESSO: Challenges of overlapping orbital and Doppler tracks , 2022, Astronomy & Astrophysics.

[10]  Anusha Pai Asnodkar,et al.  The PEPSI Exoplanet Transit Survey (PETS). II. A Deep Search for Thermal Inversion Agents in KELT-20 b/MASCARA-2 b with Emission and Transmission Spectroscopy , 2022, The Astronomical Journal.

[11]  T. Komacek,et al.  Patchy Nightside Clouds on Ultra-hot Jupiters: General Circulation Model Simulations with Radiatively Active Cloud Tracers , 2022, The Astrophysical Journal.

[12]  S. Cabot,et al.  A survey of sodium absorption in ten giant exoplanets with high-resolution transmission spectroscopy , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  D. Charbonneau,et al.  Carbon monoxide emission lines reveal an inverted atmosphere in the ultra hot Jupiter WASP-33 b consistent with an eastward hot spot , 2022, Monthly Notices of the Royal Astronomical Society.

[14]  K. Chubb,et al.  A quantitative assessment of the VO line list: Inaccuracies hamper high-resolution VO detections in exoplanet atmospheres , 2022, Astronomy & Astrophysics.

[15]  M. Marley,et al.  Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b , 2022, Nature Astronomy.

[16]  J. Winn,et al.  TESS Transit Timing of Hundreds of Hot Jupiters , 2022, The Astrophysical Journal Supplement Series.

[17]  J. Lothringer,et al.  Relative abundance constraints from high-resolution optical transmission spectroscopy of WASP-121b, and a fast model-filtering technique for accelerating retrievals , 2022, 2201.04025.

[18]  Alexander D. Rathcke,et al.  Mining the Ultrahot Skies of HAT-P-70b: Detection of a Profusion of Neutral and Ionized Species , 2021, The Astronomical Journal.

[19]  D. Ehrenreich,et al.  Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b , 2021, Nature Astronomy.

[20]  V. Parmentier,et al.  All along the line of sight: a closer look at opening angles and absorption regions in the atmospheres of transiting exoplanets , 2021, 2111.11830.

[21]  N. Casasayas-Barris,et al.  An Atomic Spectral Survey of WASP-76b: Resolving Chemical Gradients and Asymmetries , 2021, The Astronomical Journal.

[22]  P. Bordé,et al.  Toward a multidimensional analysis of transmission spectroscopy. II. Day-night-induced biases in retrievals from hot to ultrahot Jupiters , 2021, Astronomy & Astrophysics.

[23]  J. Fortney,et al.  A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere , 2021, Nature.

[24]  E. Rauscher,et al.  Exploring the Effects of Active Magnetic Drag in a General Circulation Model of the Ultrahot Jupiter WASP-76b , 2021, The Astronomical Journal.

[25]  J. Bean,et al.  No Umbrella Needed: Confronting the Hypothesis of Iron Rain on WASP-76b with Post-processed General Circulation Models , 2021, 2109.00163.

[26]  M. Osorio,et al.  Into the storm: Diving into the winds of the ultra-hot Jupiter WASP-76 b with HARPS and ESPRESSO , 2021, Astronomy & Astrophysics.

[27]  P. Gao,et al.  A Universal Cloud Composition on the Nightsides of Hot Jupiters , 2021, The Astrophysical Journal Letters.

[28]  C. Watson,et al.  An inventory of atomic species in the atmosphere of WASP-121b using UVES high-resolution spectroscopy , 2021, Monthly Notices of the Royal Astronomical Society.

[29]  M. Line,et al.  Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte Carlo radiative transfer , 2021, Monthly Notices of the Royal Astronomical Society.

[30]  T. Henning,et al.  Detection of Fe and evidence for TiO in the dayside emission spectrum of WASP-33b , 2021, Astronomy & Astrophysics.

[31]  C. Moutou,et al.  Where Is the Water? Jupiter-like C/H Ratio but Strong H2O Depletion Found on τ Boötis b Using SPIRou , 2021, The Astronomical Journal.

[32]  I. Snellen,et al.  Confirmation of Asymmetric Iron Absorption in WASP-76b with HARPS , 2021, The Astrophysical Journal.

[33]  M. Osorio,et al.  The atmosphere of HD 209458b seen with ESPRESSO , 2021, 2101.04094.

[34]  J. L. Rasilla,et al.  ESPRESSO high-resolution transmission spectroscopy of WASP-76 b , 2020, Astronomy & Astrophysics.

[35]  J. Lothringer,et al.  A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters , 2020, 2011.10626.

[36]  J. L. Rasilla,et al.  ESPRESSO at VLT , 2020 .

[37]  M. Osorio,et al.  Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO , 2020, Astronomy & Astrophysics.

[38]  A. Jermyn,et al.  Coupled day–night models of exoplanetary atmospheres , 2020, 2010.07303.

[39]  J. Laskar,et al.  The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS , 2020, Astronomy & Astrophysics.

[40]  E. Kempton,et al.  A Significant Increase in Detection of High-resolution Emission Spectra Using a Three-dimensional Atmospheric Model of a Hot Jupiter , 2020, The Astronomical Journal.

[41]  M. Brogi,et al.  Seeing above the clouds with high-resolution spectroscopy , 2020, 2008.11464.

[42]  J. Fortney,et al.  Prospects for Characterizing the Haziest Sub-Neptune Exoplanets with High-resolution Spectroscopy , 2020, The Astronomical Journal.

[43]  E. Pall'e,et al.  A temperature inversion with atomic iron in the ultra-hot dayside atmosphere of WASP-189b , 2020, Astronomy & Astrophysics.

[44]  S. Cabot,et al.  Neutral Cr and V in the Atmosphere of Ultra-hot Jupiter WASP-121 b , 2020, The Astrophysical Journal.

[45]  Laura K. McKemmish,et al.  Assessing spectra and thermal inversions due to TiO in hot Jupiter atmospheres , 2020, Monthly Notices of the Royal Astronomical Society.

[46]  A. Gebek,et al.  Alkaline exospheres of exoplanet systems: evaporative transmission spectra , 2020, 2005.02536.

[47]  Antonino Francesco Lanza,et al.  Neutral Iron Emission Lines from the Dayside of KELT-9b: The GAPS Program with HARPS-N at TNG XX , 2020, The Astrophysical Journal.

[48]  D. Ehrenreich,et al.  High-resolution transmission spectroscopy of MASCARA-2 b with EXPRES , 2020, Astronomy & Astrophysics.

[49]  A. Mandell,et al.  H- and Dissociation in Ultra-hot Jupiters: A Retrieval Case Study of WASP-18b , 2020, The Astronomical Journal.

[50]  A. Bonomo,et al.  Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters , 2020, Monthly Notices of the Royal Astronomical Society.

[51]  H. Kawahara,et al.  Searching for thermal inversion agents in the transmission spectrum of KELT-20b/MASCARA-2b: detection of neutral iron and ionised calcium H&K lines , 2020, Monthly Notices of the Royal Astronomical Society.

[52]  M. López‐Puertas,et al.  Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross-correlation method , 2020, Astronomy & Astrophysics.

[53]  Antonino Francesco Lanza,et al.  The GAPS Programme at TNG , 2020, Astronomy & Astrophysics.

[54]  J. L. Rasilla,et al.  Nightside condensation of iron in an ultra-hot giant exoplanet , 2020, Nature.

[55]  S. Cabot,et al.  Detection of neutral atomic species in the ultra-hot Jupiter WASP-121b , 2020, Monthly Notices of the Royal Astronomical Society.

[56]  C. Watson,et al.  Detection of Fe i in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy , 2020, 2001.06430.

[57]  F. Spiegelman,et al.  Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.

[58]  John P. Ahlers,et al.  Gravity-darkening Analysis of the Misaligned Hot Jupiter MASCARA-4 b , 2019, The Astrophysical Journal.

[59]  N. Madhusudhan,et al.  HyDRA-H: Simultaneous Hybrid Retrieval of Exoplanetary Emission Spectra , 2019, The Astronomical Journal.

[60]  T. Komacek,et al.  The Atmospheric Circulation of Ultra-hot Jupiters , 2019, The Astrophysical Journal.

[61]  C. Henze,et al.  Optical phase curve of the ultra-hot Jupiter WASP-121b , 2019, Astronomy & Astrophysics.

[62]  Miguel de Val-Borro,et al.  Two New HATNet Hot Jupiters around A Stars and the First Glimpse at the Occurrence Rate of Hot Jupiters from TESS , 2019, The Astronomical Journal.

[63]  M. Osorio,et al.  Atmospheric characterization of the ultra-hot Jupiter MASCARA-2b/KELT-20b , 2019, Astronomy & Astrophysics.

[64]  Laura K. McKemmish,et al.  ExoMol molecular line lists – XXXIII. The spectrum of Titanium Oxide , 2019, Monthly Notices of the Royal Astronomical Society.

[65]  D. Ehrenreich,et al.  A spectral survey of an ultra-hot Jupiter , 2019, Astronomy & Astrophysics.

[66]  N. Madhusudhan,et al.  On Degeneracies in Retrievals of Exoplanetary Transmission Spectra , 2019, The Astronomical Journal.

[67]  S. N. Mellon,et al.  MASCARA-4 b/bRing-1 b: A retrograde hot Jupiter around a bright A-type star , 2019, Astronomy & Astrophysics.

[68]  N. Madhusudhan,et al.  New avenues for thermal inversions in atmospheres of hot Jupiters , 2019, Monthly Notices of the Royal Astronomical Society.

[69]  M. Line,et al.  Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-resolution Cross-correlation Spectroscopy , 2018, The Astronomical Journal.

[70]  E. Kempton,et al.  The High-resolution Transmission Spectrum of HD 189733b Interpreted with Atmospheric Doppler Shifts from Three-dimensional General Circulation Models , 2018, The Astronomical Journal.

[71]  D. Apai,et al.  Retrieval of planetary and stellar properties in transmission spectroscopy with Aura , 2018, Monthly Notices of the Royal Astronomical Society.

[72]  Emilio Molinari,et al.  Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b , 2018, Nature.

[73]  T. Henning,et al.  An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b , 2018, Nature Astronomy.

[74]  R. Rebolo,et al.  Na I and Hα absorption features in the atmosphere of MASCARA-2b/KELT-20b , 2018, Astronomy & Astrophysics.

[75]  Jacob L. Bean,et al.  From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context , 2018, Astronomy & Astrophysics.

[76]  Tommi Koskinen,et al.  Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules , 2018, The Astrophysical Journal.

[77]  P. Ricker,et al.  FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres , 2018, Monthly Notices of the Royal Astronomical Society.

[78]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[79]  Keivan G. Stassun,et al.  KELT-20b: A Giant Planet with a Period of P ∼ 3.5 days Transiting the V ∼ 7.6 Early A Star HD 185603 , 2017, 1707.01518.

[80]  M. F. Andersen,et al.  MASCARA-2 b: A hot Jupiter transiting a $m_V=7.6$ A-star , 2017, 1707.01500.

[81]  U. Padova,et al.  Search for water vapor in the high-resolution transmission spectrum of HD189733b in the visible , 2017, 1706.00027.

[82]  'Ecole polytechnique f'ed'erale de Lausanne,et al.  Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) , 2019, Astronomy & Astrophysics.

[83]  H. Schwarz,et al.  A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets , 2016, 1612.07008.

[84]  M. Marley,et al.  High-temperature condensate clouds in super-hot Jupiter atmospheres , 2016, 1610.03325.

[85]  C. Jurgenson,et al.  EXPRES: a next generation RV spectrograph in the search for earth-like worlds , 2016, Astronomical Telescopes + Instrumentation.

[86]  A. Santerne,et al.  WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star , 2015, 1506.02471.

[87]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[88]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.

[89]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[90]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[91]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[92]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[93]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[94]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[95]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[96]  K. Lodders,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus , 2005, astro-ph/0511136.

[97]  R. S. Ram,et al.  Spectroscopic Constants, Abundances, and Opacities of the TiH Molecule , 2004, astro-ph/0411680.

[98]  A. Burrows,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003, astro-ph/0305349.

[99]  T. Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002, astro-ph/0202236.

[100]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[101]  P. Bernath MoLLIST: Molecular Line Lists, Intensities and Spectra , 2020 .

[102]  J. Birkby Spectroscopic Direct Detection of Exoplanets , 2018 .

[103]  R. Kurucz,et al.  Atomic line list , 1995 .