Impedance spectroscopy : theory, experiment, and applications

Preface. Preface to the First Edition. Contributors. Contributors to the First Edition. Chapter 1. Fundamentals of Impedance Spectroscopy (J.Ross Macdonald and William B. Johnson). 1.1. Background, Basic Definitions, and History. 1.1.1 The Importance of Interfaces. 1.1.2 The Basic Impedance Spectroscopy Experiment. 1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain. 1.1.4 Impedance-Related Functions. 1.1.5 Early History. 1.2. Advantages and Limitations. 1.2.1 Differences Between Solid State and Aqueous Electrochemistry. 1.3. Elementary Analysis of Impedance Spectra. 1.3.1 Physical Models for Equivalent Circuit Elements. 1.3.2 Simple RC Circuits. 1.3.3 Analysis of Single Impedance Arcs. 1.4. Selected Applications of IS. Chapter 2. Theory (Ian D. Raistrick, Donald R. Franceschetti, and J. Ross Macdonald). 2.1. The Electrical Analogs of Physical and Chemical Processes. 2.1.1 Introduction. 2.1.2 The Electrical Properties of Bulk Homogeneous Phases. 2.1.2.1 Introduction. 2.1.2.2 Dielectric Relaxation in Materials with a Single Time Constant. 2.1.2.3 Distributions of Relaxation Times. 2.1.2.4 Conductivity and Diffusion in Electrolytes. 2.1.2.5 Conductivity and Diffusion-a Statistical Description. 2.1.2.6 Migration in the Absence of Concentration Gradients. 2.1.2.7 Transport in Disordered Media. 2.1.3 Mass and Charge Transport in the Presence of Concentration Gradients. 2.1.3.1 Diffusion. 2.1.3.2 Mixed Electronic-Ionic Conductors. 2.1.3.3 Concentration Polarization. 2.1.4 Interfaces and Boundary Conditions. 2.1.4.1 Reversible and Irreversible Interfaces. 2.1.4.2 Polarizable Electrodes. 2.1.4.3 Adsorption at the Electrode-Electrolyte Interface. 2.1.4.4 Charge Transfer at the Electrode-Electrolyte Interface. 2.1.5 Grain Boundary Effects. 2.1.6 Current Distribution, Porous and Rough Electrodes- the Effect of Geometry. 2.1.6.1 Current Distribution Problems. 2.1.6.2 Rough and Porous Electrodes. 2.2. Physical and Electrochemical Models. 2.2.1 The Modeling of Electrochemical Systems. 2.2.2 Equivalent Circuits. 2.2.2.1 Unification of Immitance Responses. 2.2.2.2 Distributed Circuit Elements. 2.2.2.3 Ambiguous Circuits. 2.2.3 Modeling Results. 2.2.3.1 Introduction. 2.2.3.2 Supported Situations. 2.2.3.3 Unsupported Situations: Theoretical Models. 2.2.3.4 Unsupported Situations: Equivalent Network Models. 2.2.3.5 Unsupported Situations: Empirical and Semiempirical Models. Chapter 3. Measuring Techniques and Data Analysis. 3.1. Impedance Measurement Techniques (Michael C. H. McKubre and Digby D. Macdonald). 3.1.1 Introduction. 3.1.2 Frequency Domain Methods. 3.1.2.1 Audio Frequency Bridges. 3.1.2.2 Transformer Ratio Arm Bridges. 3.1.2.3 Berberian-Cole Bridge. 3.1.2.4 Considerations of Potentiostatic Control. 3.1.2.5 Oscilloscopic Methods for Direct Measurement. 3.1.2.6 Phase-Sensitive Detection for Direct Measurement. 3.1.2.7 Automated Frequency Response Analysis. 3.1.2.8 Automated Impedance Analyzers. 3.1.2.9 The Use of Kramers-Kronig Transforms. 3.1.2.10 Spectrum Analyzers. 3.1.3 Time Domain Methods. 3.1.3.1 Introduction. 3.1.3.2 Analog-to-Digital (A/D) Conversion. 3.1.3.3 Computer Interfacing. 3.1.3.4 Digital Signal Processing. 3.1.4 Conclusions. 3.2. Commercially Available Impedance Measurement Systems (Brian Sayers). 3.2.1 Electrochemical Impedance Measurement Systems. 3.2.1.1 System Configuration. 3.2.1.2 Why Use a Potentiostat? 3.2.1.3 Measurements Using 2, 3 or 4-Terminal Techniques. 3.2.1.4 Measurement Resolution and Accuracy. 3.2.1.5 Single Sine and FFT Measurement Techniques. 3.2.1.6 Multielectrode Techniques. 3.2.1.7 Effects of Connections and Input Impedance. 3.2.1.8 Verification of Measurement Performance. 3.2.1.9 Floating Measurement Techniques. 3.2.1.10 Multichannel Techniques. 3.2.2 Materials Impedance Measurement Systems. 3.2.2.1 System Configuration. 3.2.2.2 Measurement of Low Impedance Materials. 3.2.2.3 Measurement of High Impedance Materials. 3.2.2.4 Reference Techniques. 3.2.2.5 Normalization Techniques. 3.2.2.6 High Voltage Measurement Techniques. 3.2.2.7 Temperature Control. 3.2.2.8 Sample Holder Considerations. 3.3. Data Analysis (J. Ross Macdonald). 3.3.1 Data Presentation and Adjustment. 3.3.1.1 Previous Approaches. 3.3.1.2 Three-Dimensional Perspective Plotting. 3.3.1.3 Treatment of Anomalies. 3.3.2 Data Analysis Methods. 3.3.2.1 Simple Methods. 3.3.2.2 Complex Nonlinear Least Squares. 3.3.2.3 Weighting. 3.3.2.4 Which Impedance-Related Function to Fit? 3.3.2.5 The Question of "What to Fit" Revisited. 3.3.2.6 Deconvolution Approaches. 3.3.2.7 Examples of CNLS Fitting. 3.3.2.8 Summary and Simple Characterization Example. Chapter 4. Applications of Impedance Spectroscopy. 4.1. Characterization of Materials (N. Bonanos, B. C. H. Steele, and E. P. Butler). 4.1.1 Microstructural Models for Impedance Spectra of Materials. 4.1.1.1 Introduction. 4.1.1.2 Layer Models. 4.1.1.3 Effective Medium Models. 4.1.1.4 Modeling of Composite Electrodes. 4.1.2 Experimental Techniques. 4.1.2.1 Introduction. 4.1.2.2 Measurement Systems. 4.1.2.3 Sample Preparation-Electrodes. 4.1.2.4 Problems Associated With the Measurement of Electrode Properties. 4.1.3 Interpretation of the Impedance Spectra of Ionic Conductors and Interfaces. 4.1.3.1 Introduction. 4.1.3.2 Characterization of Grain Boundaries by IS. 4.1.3.3 Characterization of Two-Phase Dispersions by IS. 4.1.3.4 Impedance Spectra of Unusual Two-phase Systems. 4.1.3.5 Impedance Spectra of Composite Electrodes. 4.1.3.6 Closing Remarks. 4.2. Characterization of the Electrical Response of High Resistivity Ionic and Dielectric Solid Materials by Immittance Spectroscopy (J. Ross Macdonald). 4.2.1 Introduction. 4.2.2 Types of Dispersive Response Models: Strengths and Weaknesses. 4.2.2.1 Overview. 4.2.2.2 Variable-slope Models. 4.2.2.3 Composite Models. 4.2.3 Illustration of Typical Data Fitting Results for an Ionic Conductor. 4.3. Solid State Devices (William B. Johnson and Wayne L. Worrell). 4.3.1 Electrolyte-Insulator-Semiconductor (EIS) Sensors. 4.3.2 Solid Electrolyte Chemical Sensors. 4.3.3 Photoelectrochemical Solar Cells. 4.3.4 Impedance Response of Electrochromic Materials and Devices (Gunnar A. Niklasson, Anna Karin Johsson, and Maria Stromme). 4.3.4.1 Introduction. 4.3.4.2 Materials. 4.3.4.3 Experimental Techniques. 4.3.4.4 Experimental Results on Single Materials. 4.3.4.5 Experimental Results on Electrochromic Devices. 4.3.4.6 Conclusions and Outlook. 4.3.5 Time-Resolved Photocurrent Generation (Albert Goossens). 4.3.5.1 Introduction-Semiconductors. 4.3.5.2 Steady-State Photocurrents. 4.3.5.3 Time-of-Flight. 4.3.5.4 Intensity-Modulated Photocurrent Spectroscopy. 4.3.5.5 Final Remarks. 4.4. Corrosion of Materials (Digby D. Macdonald and Michael C. H. McKubre). 4.4.1 Introduction. 4.4.2 Fundamentals. 4.4.3 Measurement of Corrosion Rate. 4.4.4 Harmonic Analysis. 4.4.5 Kramer-Kronig Transforms. 4.4.6 Corrosion Mechanisms. 4.4.6.1 Active Dissolution. 4.4.6.2 Active-Passive Transition. 4.4.6.3 The Passive State. 4.4.7 Point Defect Model of the Passive State (Digby D. Macdonald). 4.4.7.1 Introduction. 4.4.7.2 Point Defect Model. 4.4.7.3 Electrochemical Impedance Spectroscopy. 4.4.7.4 Bilayer Passive Films. 4.4.8 Equivalent Circuit Analysis (Digby D. Macdonald and Michael C. H. McKubre). 4.4.8.1 Coatings. 4.4.9 Other Impedance Techniques. 4.4.9.1 Electrochemical Hydrodynamic Impedance (EHI). 4.4.9.2 Fracture Transfer Function (FTF). 4.4.9.3 Electrochemical Mechanical Impedance. 4.5. Electrochemical Power Sources. 4.5.1 Special Aspects of Impedance Modeling of Power Sources (Evgenij Barsoukov). 4.5.1.1 Intrinsic Relation Between Impedance Properties and Power Sources Performance. 4.5.1.2 Linear Time-Domain Modeling Based on Impedance Models, Laplace Transform. 4.5.1.3 Expressing Model Parameters in Electrical Terms, Limiting Resistances and Capacitances of Distributed Elements. 4.5.1.4 Discretization of Distributed Elements, Augmenting Equivalent Circuits. 4.5.1.5 Nonlinear Time-Domain Modeling of Power Sources Based on Impedance Models. 4.5.1.6 Special Kinds of Impedance Measurement Possible with Power Sources-Passive Load Excitation and Load Interrupt. 4.5.2 Batteries (Evgenij Barsoukov). 4.5.2.1 Generic Approach to Battery Impedance Modeling. 4.5.2.2 Lead Acid Batteries. 4.5.2.3 Nickel Cadmium Batteries. 4.5.2.4 Nickel Metal-hydride Batteries. 4.5.2.5 Li-ion Batteries. 4.5.3 Impedance Behavior of Electrochemical Supercapacitors and Porous Electrodes (Brian E. Conway). 4.5.3.1 Introduction. 4.5.3.2 The Time Factor in Capacitance Charge or Discharge. 4.5.3.3 Nyquist (or Argand) Complex-Plane Plots for Representation of Impedance Behavior. 4.5.3.4 Bode Plots of Impedance Parameters for Capacitors. 4.5.3.5 Hierarchy of Equivalent Circuits and Representation of Electrochemical Capacitor Behavior. 4.5.3.6 Impedance and Voltammetry Behavior of Brush Electrode Models of Porous Electrodes. 4.5.3.7 Impedance Behavior of Supercapacitors Based on Pseudocapacitance. 4.5.3.8 Deviations of Double-layer Capacitance from Ideal Behavior: Representation by a Constant-phase Element (CPE). 4.5.4 Fuel Cells (Norbert Wagner). 4.5.4.1 Introduction. 4.5.4.2 Alkaline Fuel Cells (AFC). 4.5.4.3 Polymer Electrolyte Fuel Cells (PEFC). 4.5.4.4 Solid Oxide Fuel Cells (SOFC). Appendix. Abbreviations and Definitions of Models. References. Index.

[1]  Charles W. Carter Graphic representation of the impedance of networks containing resistances and two reactances , 1925 .

[2]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[3]  F. P. Bowden,et al.  The Electrolytic Behaviour of Thin Films. Part I. Hydrogen , 1928 .

[4]  E. Verwey Electrolytic conduction of a solid insulator at high fields The formation of the anodic oxide film on aluminium , 1935 .

[5]  A. Frumkin,et al.  A new determination of the capacity of the electrical double layer , 1935 .

[6]  W. Schottky,et al.  Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter , 1939 .

[7]  J. Kirkwood,et al.  Anomalous Dispersion and Dielectric Loss in Polar Polymers , 1941 .

[8]  Raymond M. Fuoss,et al.  Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems* , 1941 .

[9]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[10]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[11]  Stanford Goldman,et al.  Transformation calculus and electrical transients , 1949 .

[12]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[13]  Hung-Chih Chang,et al.  Polarization in Electrolytic Solutions. Part I. Theory , 1952 .

[14]  H. Gerischer,et al.  Zum Mechanismus der kathodischen Wasserstoffabscheidung an Quecksilber, Silber und Kupfer , 1955, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[15]  Preparation and maintenance of spherical metal electrodes in hydrogen , 1956 .

[16]  C. P. Smyth Dielectric behavior and structure , 1956 .

[17]  K. B. Oldham Faradaic rectification: theory and application to the Hg22+/Hg electrode , 1957 .

[18]  J. Schrama,et al.  On the phenomenological theory of linear relaxation processes , 1957 .

[19]  M. Stern,et al.  Electrochemical Polarization I . A Theoretical Analysis of the Shape of Polarization Curves , 1957 .

[20]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[21]  S. Glarum,et al.  Dielectric Relaxation of Isoamyl Bromide , 1960 .

[22]  D. Davidson,et al.  DIELECTRIC RELAXATION IN LIQUIDS: I. THE REPRESENTATION OF RELAXATION BEHAVIOR , 1961 .

[23]  A. Matsumoto,et al.  Dielectric Relaxation of Nonrigid Molecules at Lower Temperature , 1962 .

[24]  B. Conway,et al.  Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage , 1962 .

[25]  L. Young,et al.  Anodic Oxide Films , 1962 .

[26]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[27]  N. Sato,et al.  The Kinetics of Anodic Oxidation of Iron in Neutral Solution II . Initial Stages , 1964 .

[28]  Investigations of formation and removal of hydrogen and oxygen depositions on platinum by a new nonstationary method , 1965 .

[29]  The Fast Linear Growth of Magnetite on Mild Steel in High-Temperature Aqueous Conditions , 1965 .

[30]  P. Boddy The structure of the semiconductor-electrolyte interface , 1965 .

[31]  Brian E. Conway,et al.  Significance of Nonsteady‐State A‐C and D‐C Measurements in Electrochemical Adsorption Kinetics Applications to Galvanostatic and Voltage Sweep Methods , 1965 .

[32]  P. Delahay,et al.  Electrode impedance without a priori separation of double-layer charging and faradaic process , 1967 .

[33]  E. H. Nicollian,et al.  The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .

[34]  M. Sluyters-Rehbach,et al.  On the Impedance of Galvanic Cells , 1967 .

[35]  A Null Instrument for Three-End Four-Terminal Admittance Measurements at Ultra-Low Frequencies , 1968 .

[36]  The anodic dissolution of molybdenum in alkaline solutions , 1969 .

[37]  H. B. Johnson,et al.  Electrical and mechanical relaxation in CaF2 doped with NaF , 1969 .

[38]  A. Pilla A Transient Impedance Technique for the Study of Electrode Kinetics Application to Potentiostatic Methods , 1970 .

[39]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[40]  Michel Keddam,et al.  Faradaic Impedances: Diffusion Impedance and Reaction Impedance , 1970 .

[41]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[42]  R. Birke Operational admittance of an electrode process where an a priori dependence of rate constant on potential is not assumed , 1971 .

[43]  John W. Hartwell,et al.  A Procedure for Implementing the Fast Fourier Transform on Small Computers , 1971, IBM J. Res. Dev..

[44]  T. Nakajima Correlation between electrical conduction and dielectric polarization in inorganic glasses , 1971 .

[45]  R. Armstrong,et al.  Impedance plane display of a reaction with an adsorbed intermediate , 1972 .

[46]  H. Takenouti,et al.  Passivation of Iron in Sulfuric Acid Medium , 1972 .

[47]  R. Armstrong,et al.  Double layer capacity measurements involving solid electrolytes , 1973 .

[48]  K. J. Vetter,et al.  Kinetics of layer formation and corrosion processes of passive iron in acid solutions , 1973 .

[49]  The impedance of metals in the passive and transpassive regions , 1973 .

[50]  R. Armstrong,et al.  The impedance of the sodium β-alumina interphase , 1973 .

[51]  R. Armstrong The metal-solid electrolyte interphase , 1974 .

[52]  C. T. Morse A computer controlled apparatus for measuring AC properties of materials over the frequency range 10-5 to 105 Hz , 1974 .

[53]  D. Ravaine,et al.  Application du tracé des diagrammes d'impédance complexe à l'étude des propriétés électriques et diélectriques des verres alcalins , 1974 .

[54]  The anodic dissolution of silver into silver rubidium iodide , 1974 .

[55]  S. Rangarajan A unified approach to linear electrochemical systems: II. Phenomenological coupling , 1974 .

[56]  A. Jonscher Hopping losses in polarisable dielectric media , 1974, Nature.

[57]  W. Scheider Theory of the frequency dispersion of electrode polarization. Topology of networks with fractional power frequency dependence , 1975 .

[58]  R. L. Meirhaeghe,et al.  On the application of the Kramers-Kronig relations to problems concerning the frequency dependence of electrode impedance , 1975 .

[59]  H. Takenouti,et al.  A model of the anodic behaviour of iron in sulphuric acid medium , 1975 .

[60]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[61]  H. Namikawa Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation , 1975 .

[62]  A. D. Franklin,et al.  Electrode Effects in the Measurement of Ionic Conductivity , 1975 .

[63]  P. Bordewijk,et al.  Defect-diffusion models of dielectric relaxation , 1975 .

[64]  F. Sturm,et al.  Degree of utilization and specific effective surface area of electrocatalysts in porous electrodes , 1975 .

[65]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[66]  Polarization in ionic crystals with incompletely blocking electrodes , 1975 .

[67]  The Electrochemical Double Layer in Solid Electrolytes , 1976 .

[68]  Florian Mansfeld,et al.  Electrochemical monitoring of atmospheric corrosion phenomena , 1976 .

[69]  J. Strutt,et al.  A versatile cell for measurement of ionic thermocurrents (ITC) , 1976 .

[70]  S. Provencher,et al.  An eigenfunction expansion method for the analysis of exponential decay curves , 1976 .

[71]  On the ac-impedance of electroactive powders. γ-manganese dioxide , 1976 .

[72]  L. Heyne,et al.  Correlation between impedance, microstructure and composition of calcia-stabilized zirconia , 1976 .

[73]  An Impedance Study of the Membrane Polarisation Effect in Simulated Rock Systems , 1976 .

[74]  B. Steele High Temperature Fuel Cells and Electrolysers , 1976 .

[75]  H. L. Kies,et al.  A.C. Voltammetry at large amplitudes , 1977 .

[76]  A.C. techniques to evaluate the kinetics of corrosion reactions , 1977 .

[77]  R. D. Armstrong,et al.  The anodic dissolution of lead in oxygenated and deoxygenated sulphuric acid solutions , 1977 .

[78]  R. Huggins,et al.  Ionic conductivity and electrode effects on β-PbF2 , 1977 .

[79]  A rapid on-line computer method for electrochemical investigations , 1977 .

[80]  D. Franceschetti,et al.  Electrical response of materials with recombining space charge , 1977 .

[81]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[82]  J. A. Garber,et al.  Analysis of Impedance and Admittance Data for Solids and Liquids , 1977 .

[83]  G. Pfister,et al.  Dispersive (non-Gaussian) transient transport in disordered solids , 1978 .

[84]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[85]  Polarization at the (U0.7Y0.3)O2+x/YSZ interface by impedance dispersion analysis , 1978 .

[86]  1. Boiler corrosion and the requirement for feed- and boiler-water chemical control in nuclear steam generators , 1978 .

[87]  U. Bertocci ac induced corrosion. The effect of an alternating voltage on electrodes under charge-transfer control , 1979 .

[88]  L. C. Jonghe,et al.  Grain boundaries and ionic conduction in sodium beta alumina , 1979 .

[89]  C. G. Law A Model for the Anodic Dissolution of Iron in Sulfuric Acid , 1979 .

[90]  J. Strutt,et al.  Bulk and Grain Boundary Ionic Conductivity in Polycrystalline β″‐ Alumina , 1979 .

[91]  M. Tomkiewicz Relaxation Spectrum Analysis of Semiconductor‐Electrolyte Interface ‐ TiO2 , 1979 .

[92]  J. Bernasconi,et al.  Anomalous Frequency-Dependent Conductivity in Disordered One-Dimensional Systems , 1979 .

[93]  J. Zemel,et al.  The Si3N4/Si ion-sensitive semiconductor electrode , 1979, IEEE Transactions on Electron Devices.

[94]  H. Thirsk,et al.  The application of A. C. impedance methods to solid electrolytes , 1980 .

[95]  Electrical transport properties in inhomogeneous media , 1980 .

[96]  H. Engstrom,et al.  Automated multifrequency measurements of the complex impedance of fast ion conductors , 1980 .

[97]  Application of AC techniques to kinetic studies of electrochemical systems , 1980 .

[98]  D. Franceschetti,et al.  Interfacial space charge and capacitance in ionic crystals: Intrinsic conductors , 1980 .

[99]  M. Brodwin,et al.  Dielectric relaxation phenomena associated with hopping ionic conduction , 1980 .

[100]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[101]  E. Lilley,et al.  Ionic conductivity of suzuki phases , 1980 .

[102]  RECENT PROGRESS IN INTERCALATION CHEMISTRY: ALKALI METALS IN CHALCOGENIDE HOST STRUCTURES , 1980 .

[103]  S. Glarum,et al.  The A‐C Response of Iridium Oxide Films , 1980 .

[104]  J. Ross Macdonald,et al.  Three dimensional perspective plotting and fitting of immittance data , 1981 .

[105]  P. Bergveld,et al.  The history of chemically sensitive semiconductor devices , 1981 .

[106]  N. Matsui Complex-impedance analysis for the development of zirconia oxygen sensors , 1981 .

[107]  A. Burggraaf,et al.  Grain boundary effects on ionic conductivity in ceramic GdxZr1–xO2–(x/2) solid solutions , 1981 .

[108]  D. Franceschetti Small-signal A.C. response theory for systems exhibiting impurity oxygen transport , 1981 .

[109]  B. Conway,et al.  Competitive adsorption and state of charge of halide ions in monolayer oxide film growth processes at Pt anodes , 1981 .

[110]  Effect of large voltage modulations on electrodes under charge-transfer control , 1981 .

[111]  E. C. Subbarao,et al.  Zirconia - an overview , 1981 .

[112]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[113]  Automatic spectroscopy of solids in the low-frequency range , 1981 .

[114]  H. Oheda Phase‐shift analysis of modulated photocurrent: Its application to the determination of the energetic distribution of gap states , 1981 .

[115]  O. R. Mattos,et al.  Reaction Model for Iron Dissolution Studied by Electrode Impedance II . Determination of the Reaction Model , 1981 .

[116]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[117]  S. Badwal,et al.  Equivalent Circuit Analysis of the Impedance Response of Semiconductor/Electrolyte/Counterelectrode Cells , 1982 .

[118]  J. Macdonald,et al.  Analysis of hydrogen-doped lithium nitride admittance data , 1982 .

[119]  R. Cobbold,et al.  Dependence of interface state properties of electrolyte-SiO2-Si structures on pH , 1982, IEEE Transactions on Electron Devices.

[120]  Y. Tsai,et al.  Nonlinear least-squares analyses of complex impedance and admittance data for solid electrolytes , 1982 .

[121]  T. Jacobsen,et al.  Conductivity, charge transfer and transport number—an ac-investigation of the polymer electrolyte LiSCN-poly(ethyleneoxide) , 1982 .

[122]  M. A. Vorotyntsev,et al.  Nonlocal electrostatic approach to the problem of a double layer at a metal-electrolyte interface , 1982 .

[123]  W. B. Johnson,et al.  Lithium and sodium intercalated dichalcogenides: Properties and electrode applications , 1982 .

[124]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study , 1983 .

[125]  M. Casciola,et al.  Ionic conduction and dielectric properties of anhydrous alkali metal salt forms of α-zirconium phosphate , 1983 .

[126]  H. J. de Bruin,et al.  The fourier analysis of impedance spectra for electroded solid electrolytes , 1983 .

[127]  A. Méhauté,et al.  Introduction to transfer and motion in fractal media: The geometry of kinetics , 1983 .

[128]  L. E. Eiselstein,et al.  Prediction of Crack Growth in Aqueous Environments. , 1983 .

[129]  J. S. Gill,et al.  Corrosion Measurements Derived from Small Perturbation Non-Linearity—Part 1: Harmonic Analysis , 1983 .

[130]  Martin Colloms Computer controlled testing and instrumentation , 1983 .

[131]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[132]  Piet Bergveld,et al.  On the impedance of the silicon dioxide/electrolyte interface , 1983 .

[133]  I. Raistrick Lithium insertion reactions in tungsten and vanadium oxide bronzes , 1983 .

[134]  A. Brailsford,et al.  The electrical characterization of ceramic oxides , 1983 .

[135]  Interfacial Effects in Mass Transport in Ionic Solids , 1983 .

[136]  E. Subbarao,et al.  Solid electrolytes with oxygen ion conduction , 1984 .

[137]  Michael F. Shlesinger,et al.  Williams-watts dielectric relaxation: A fractal time stochastic process , 1984 .

[138]  W. Vielstich,et al.  The Kinetics of Oxygen Reduction at Porous Teflon‐Bonded Fuel Cell Electrodes , 1984 .

[139]  B. Boukamp A microcomputer based system for frequency dependent impedance/admittance measurements , 1984 .

[140]  G. B. Cook,et al.  Analysis of impedance data for single crystal na β-alumina at low temperatures , 1984 .

[141]  H. Näfe,et al.  Ionic conductivity of ThO2- and ZrO2-based electrolytes between 300 and 2000 K☆ , 1984 .

[142]  Restructuring of porous nickel electrodes , 1984 .

[143]  J. Macdonald,et al.  Pseudo reaction rate in the AC response of an electrolytic cell , 1984 .

[144]  R. W. Powers The separability of inter- and intragranular resistivities in sodium beta-alumina type ceramics , 1984 .

[145]  P. C. Shipe,et al.  Bulk conductivity and polarization of ionic crystals exhibiting defect exchange between inequivalent sites , 1984 .

[146]  S. Badwal,et al.  Non-stoichiometric oxide electrodes for solid state electrochemical devices , 1984 .

[147]  Y. Gefen,et al.  Dynamic Scaling near the Percolation Threshold in Thin Au Films , 1984 .

[148]  B. J. Hoenders,et al.  Theoretical solution of the transient current equation for mobile ions in a dielectric film under the influence of a constant electric field , 1984 .

[149]  B. Steele,et al.  Electrical conductivity/microstructural relationships in aged CaO and CaO + MgO partially-stabilized zirconia , 1984 .

[150]  Digital Impedance for Faradaic Analysis III. Copper Corrosion in Oxygenated 0.1N HCl , 1985 .

[151]  DIGITAL IMPEDANCE FOR FARADAIC ANALYSIS: I. INTRODUCTION TO DIGITAL SIGNAL ANALYSIS AND IMPEDANCE MEASUREMENTS FOR ELECTROCHEMICAL AND CORROSION SYSTEMS. , 1985 .

[152]  E. Butler,et al.  Electrical properties of MgO + Y2O3 and CaO + Y2O3 partially-stabilized zirconias , 1985 .

[153]  Comparison of two recent approaches towards a unified theory of the electrical double layer , 1985 .

[154]  Naoya Ogata,et al.  Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method , 1985 .

[155]  Liu Fractal model for the ac response of a rough interface. , 1985, Physical review letters.

[156]  J. Thevenin,et al.  Passivating films on lithium electrodes. An approach by means of electrode impedance spectroscopy , 1985 .

[157]  Ionic conductivity of monoclinic and tetragonal yttria-zirconia single crystals , 1985 .

[158]  R. Holze,et al.  New oxygen cathodes for fuel cells with organic fuels , 1986 .

[159]  W. Siripala,et al.  Electrolyte electroreflectance study of surface optimization of n-CuInSe/sub 2/ in photoelectrochemical solar cells , 1986 .

[160]  H. Göhr,et al.  Faraday-Impedanz als Verknüpfung von Impedanzelementen , 1986 .

[161]  J. Macdonald,et al.  Analysis of dielectric or conductive system frequency response data using the Williams–Watts function , 1986 .

[162]  J. Maier On the Conductivity of Polycrystalline Materials , 1986 .

[163]  Harmonic Impedance Spectroscopy for the Determination of Corrosion Rates in Cathodically Protected Systems , 1986 .

[164]  Debye-Hückel-type relaxation processes in solid ionic conductors: The model , 1986 .

[165]  R. Kirchheim Growth kinetics of passive films , 1987 .

[166]  J. Ross Macdonald,et al.  A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations , 1987 .

[167]  J. Sundaram,et al.  Oxidation of formic acid at polyaniline-coated and modified-polyaniline-coated electrodes , 1987 .

[168]  O. Bohnké,et al.  Comparative study of the electrochromic properties of WO3 thin films , 1988 .

[169]  Electrical response of oxygen sensing TiO2 surfaces and fractal Pt/YSZ interfaces , 1988 .

[170]  E. Yeager,et al.  The effects of trace anions on the voltammetry of single crystal gold surfaces , 1989 .

[171]  N. Bonanos High oxide ion conductivity in bismuth uranate, Bi2UO6 , 1989 .

[172]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[173]  L. Peter,et al.  Dynamic aspects of semiconductor photoelectrochemistry , 1990 .

[174]  D. Macdonald,et al.  An electrochemical impedance analysis of passive films on nickel(111) in phosphate buffer solutions , 1990 .

[175]  Zdravko Stoynov,et al.  Impedance modelling and data processing: structural and parametrical estimation , 1990 .

[176]  C. Bohnke Impedance analysis of amorphous WO3 thin films in hydrated LiClO4-propylene carbonate electrolytes , 1990 .

[177]  M. A. Reid Impedance studies of nickel/cadmium and nickel/hydrogen cells using the cell case as a reference electrode , 1990 .

[178]  B. Scrosati,et al.  Electrochromic NiOxHy, hydrated films: cyclic voltammetry and ac impedance spectroscopy in aqueous electrolyte , 1990 .

[179]  Graham Williams,et al.  Anelastic and Dielectric Effects in Polymeric Solids , 1991 .

[180]  T. Pajkossy,et al.  Electrochemistry at fractal surfaces , 1991 .

[181]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[182]  The use of impedance spectroscopy and NLLS-fit data analysis in the study of oxygen electrode kinetics , 1991 .

[183]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[184]  S. Fletcher An electrical model circuit that reproduces the behaviour of conducting polymer electrodes in electrolyte solutions , 1992 .

[185]  B. Tilak,et al.  A model to characterize the impedance of electrochemical capacitors arising from reactions of the type Oad + n e− ⇇ Rad , 1992 .

[186]  N. Giordano,et al.  Nafion Distribution in Gas Diffusion Electrodes for Solid‐Polymer‐Electrolyte‐Fuel‐Cell Applications , 1992 .

[187]  B. Scrosati,et al.  The electrochromic process in non-stoichiometric nickel oxide thin film electrodes , 1992 .

[188]  T. Moffat,et al.  An Electrochemical and X‐Ray Photoelectron Spectroscopy Study of the Passive State of Chromium , 1992 .

[189]  R. N. Schindler,et al.  A new impedance spectrometer for the investigation of electrochemical systems , 1992 .

[190]  E. Gerdes,et al.  Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility , 1992 .

[191]  Shimshon Gottesfeld,et al.  Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells , 1993 .

[192]  M. Leclerc,et al.  Steric and electronic effects in methyl and methoxy substituted polyanilines , 1993 .

[193]  Hartmut Wendt,et al.  Impedance spectroscopy: a method for in situ characterization of experimental fuel cells , 1993 .

[194]  Shimshon Gottesfeld,et al.  Conducting polymers as active materials in electrochemical capacitors , 1994 .

[195]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[196]  Shimshon Gottesfeld,et al.  A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors , 1994 .

[197]  A. Mcevoy,et al.  Conductivity measurements of various yttria-stabilized zirconia samples , 1994, Journal of Materials Science.

[198]  R. Torresi,et al.  LITHIUM INSERTION IN WO3 STUDIED BY SIMULTANEOUS MEASUREMENTS OF IMPEDANCE, ELECTROGRAVIMETRIC AND ELECTRO-OPTICAL TRANSFER FUNCTIONS , 1994 .

[199]  E. B. Castro Analysis of the impedance response of passive iron , 1994 .

[200]  T. Iijima,et al.  Electrodic characteristics of various carbon materials for lithium rechargeable batteries , 1995 .

[201]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[202]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[203]  L. O. Barling,et al.  Some aspects of battery impedance characteristics , 1995, Proceedings of INTELEC 95. 17th International Telecommunications Energy Conference.

[204]  M. Clericuzio,et al.  Ionic diffusivity and conductivity of plasticized polymer electrolytes: PMFG-NMR and complex impedance studies , 1995 .

[205]  Electrochemical Lithium Intercalation Reaction of Anodic Vanadium Oxide Film. , 1995 .

[206]  Xiaoming Ren,et al.  Pem fuel cells for transportation and stationary power generation applications , 1996 .

[207]  Niklasson,et al.  Fractal dimension of Li insertion electrodes studied by diffusion-controlled voltammetry and impedance spectroscopy. , 1996, Physical review. B, Condensed matter.

[208]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[209]  Svein Sunde,et al.  Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[210]  J. Maier,et al.  The impedance of imperfect electrode contacts on solid electrolytes , 1996 .

[211]  L. Schlapbach,et al.  Surface treatment of a LaNi5-type metal-hydride electrode with an alkaline solution dissolving cobalt(II) hydroxide , 1996 .

[212]  Maria Strømme,et al.  Impedance spectroscopy on lithiated Ti oxide and Ti oxyfluoride thin films , 1996 .

[213]  S. Pyun,et al.  Lithium ion transport in r.f.-magnetron sputtered WO3 film as a function of lithium content , 1996 .

[214]  Antonino S. Aricò,et al.  Analysis of the Electrochemical Characteristics of a Direct Methanol Fuel Cell Based on a Pt‐Ru/C Anode Catalyst , 1996 .

[215]  Meilin Liu,et al.  Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors , 1996 .

[216]  Impedance studies on Li insertion electrodes of Sn oxide and oxyfluoride , 1996 .

[217]  M. Mogensen,et al.  Performance/structure correlation for composite SOFC cathodes , 1996 .

[218]  T. Pajkossy,et al.  Impedance aspects of anion adsorption on gold single crystal electrodes , 1996 .

[219]  Nanocrystalline Electronic Junctions , 1996 .

[220]  Karl V. Kordesch,et al.  Fuel cells and their applications , 1996 .

[221]  Erich Gülzow,et al.  Alkaline fuel cells: a critical view , 1996 .

[222]  Investigations into the Kinetics of the Ni-YSZ-Cermet-Anode of a Solid Oxide Fuel Cell , 1997 .

[223]  T. Amemiya,et al.  Color impedance and electrochemical impedance studies of WO3 thin films: H+ and Li+ transport , 1997 .

[224]  C. J. Barnett,et al.  Aspects of the anodic oxidation of methanol , 1997 .

[225]  R. N. Schindler,et al.  Investigation of conducting polymer electrodes by impedance spectroscopy during electropolymerization under galvanostatic conditions , 1997 .

[226]  S. Gottesfeld,et al.  POLYMER ELECTROLYTE FUEL CELLS. , 1997 .

[227]  A. S. Al-Zakri,et al.  Preparation of Raney–Ni gas diffusion electrode by filtration method for alkaline fuel cells , 1997 .

[228]  D. Aurbach,et al.  SIMULTANEOUS MEASUREMENTS AND MODELING OF THE ELECTROCHEMICAL IMPEDANCE AND THE CYCLIC VOLTAMMETRIC CHARACTERISTICS OF GRAPHITE ELECTRODES DOPED WITH LITHIUM , 1997 .

[229]  Jian-qing Zhang,et al.  Study of early cycling deterioration of a Ni/MH battery by electrochemical impedance spectroscopy , 1998 .

[230]  J. Winkler,et al.  Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode , 1998 .

[231]  Juan Bisquert,et al.  Impedance of constant phase element (CPE)-blocked diffusion in film electrodes , 1998 .

[232]  Kenneth R. Bundy,et al.  An electrochemical impedance spectroscopy method for prediction of the state of charge of a nickel-metal hydride battery at open circuit and during discharge , 1998 .

[233]  E. Barsoukov,et al.  Effect of Low‐Temperature Conditions on Passive Layer Growth on Li Intercalation Materials In Situ Impedance Study , 1998 .

[234]  S. Krishnaswami,et al.  Composition dependence of frequency power law of ionic conductivity of glasses , 1998 .

[235]  A. Lasia Hydrogen evolution/oxidation reactions on porous electrodes , 1998 .

[236]  J. Sanz,et al.  Non-Debye conductivity relaxation in the non-Arrhenius Li0.5La0.5TiO3 fast ionic conductor. A nuclear magnetic resonance and complex impedance study , 1998 .

[237]  Mogens Bjerg Mogensen,et al.  Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes , 1998 .

[238]  Mathias Schulze,et al.  New dry preparation technique for membrane electrode assemblies for PEM fuel cells , 1999 .

[239]  Peter Urban,et al.  Impedance studies on direct methanol fuel cell anodes , 1999 .

[240]  David L. Sidebottom,et al.  UNIVERSAL APPROACH FOR SCALING THE AC CONDUCTIVITY IN IONIC GLASSES , 1999 .

[241]  W. A. Adams,et al.  Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications , 1999 .

[242]  Liquan Chen,et al.  Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries , 1999 .

[243]  M. Ciureanu,et al.  Electrochemical Impedance Study of Electrode‐Membrane Assemblies in PEM Fuel Cells: I. Electro‐oxidation of H 2 and H 2 / CO Mixtures on Pt‐Based Gas‐Diffusion Electrodes , 1999 .

[244]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[245]  M. Atanasov,et al.  Polarizable continuum model for lithium interface transitions between a liquid electrolyte and an intercalation electrode , 1999 .

[246]  E. Barsoukov,et al.  Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence , 1999 .

[247]  J. Isidorsson,et al.  Theoretical Analysis of Chronoamperometric Electrochemical Ion Intercalation , 1999 .

[248]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[249]  J. Dygas,et al.  Impedance and polarisation studies of new lithium polyelectrolyte gels , 1999 .

[250]  Jianqing Zhang,et al.  Electrochemical impedance spectroscopy study of Ni/MH batteries , 1999 .

[251]  N. Wagner,et al.  Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell , 2004 .

[252]  P. Monk Charge Movement Through Electrochromic Thin-Film Tungsten Trioxide , 1999 .

[253]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[254]  Günter Schiller,et al.  Plasma Sprayed Thin-Film SOFC For Reduced Operating Temperature , 2000 .

[255]  G. Sundholm,et al.  Coupling between ionic defect structure and electronic conduction in passive films on iron, chromium and iron-chromium alloys , 2000 .

[256]  Satyen K. Deb,et al.  Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films , 2000 .

[257]  Juergen Fleig The influence of non-ideal microstructures on the analysis of grain boundary impedances , 2000 .

[258]  Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra , 1999, cond-mat/9911125.

[259]  Yohannes Kiros,et al.  Long-term hydrogen oxidation catalysts in alkaline fuel cells , 2000 .

[260]  Subbarao Surampudi,et al.  Development of low temperature Li-ion electrolytes for NASA and DoD applications , 2001 .

[261]  P. Ross,et al.  Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes , 2001 .

[262]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[263]  S. Ramaprabhu,et al.  Electrochemical investigations of ZrCrmFenCopVo (m+n+o+p=2) electrode for Ni–MH battery applications , 2001 .

[264]  Stanislaw Gubanski,et al.  Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas , 2001 .

[265]  Donald Prohaska The birth of the fuel cell , 2001 .

[266]  Koichi Kobayashi,et al.  Characterization of CO tolerance of PEMFC by ac impedance spectroscopy , 2001 .

[267]  Norbert Wagner,et al.  Validation and evaluation of electrochemical impedance spectra of systems with states that change with time , 2001 .

[268]  Koichi Kobayashi,et al.  Effect of CO gas and anode-metal loading on H2 oxidation in proton exchange membrane fuel cell , 2001 .

[269]  N. S. Ferriols,et al.  Dynamic Processes in the Coloration of WO 3 by Lithium Insertion , 2001 .

[270]  S. Rajendran,et al.  Study on Li ion conduction behaviour of the plasticized polymer electrolytes based on poly acrylonitrile , 2001 .

[271]  K L Ngai,et al.  Origin of constant loss in ionic conductors. , 2001, Physical review letters.

[272]  Yves Rolain,et al.  Frequency response function measurements in the presence of nonlinear distortions , 2001, Autom..

[273]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[274]  Göran Frenning,et al.  Theoretical derivation of the isothermal transient ionic current in an ion conductor: Migration, diffusion and space-charge effects , 2001 .

[275]  M. Bojinov,et al.  The transpassive dissolution mechanism of highly alloyed stainless steels: II. Effect of pH and solution anion on the kinetics , 2002 .

[276]  S. Pyun,et al.  Analysis of cell impedance measured on the LiMn2O4 film electrode by PITT and EIS with Monte Carlo simulation , 2002 .

[277]  Christophe Coutanceau,et al.  Recent advances in the development of direct alcohol fuel cells (DAFC) , 2002 .

[278]  B. Andreaus,et al.  Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy , 2002 .

[279]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[280]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[281]  C. Cramer,et al.  Dynamics of mobile ions in solid electrolytes - conductivity spectra and the concept of mismatch and relaxation , 2002 .

[282]  N. Wagner Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy , 2002 .

[283]  K. Ngai,et al.  Cage decay, near constant loss, and crossover to cooperative ion motion in ionic conductors : Insight from experimental data , 2002 .

[284]  T. Pajkossy,et al.  Measurement of adsorption rates of anions on Au(111) electrodes by impedance spectroscopy , 2002 .

[285]  E. Wang,et al.  Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte , 2002 .

[286]  Wendy G. Pell,et al.  Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices , 2002 .

[287]  P. Holtappels,et al.  Fabrication and performance of advanced multi-layer SOFC cathodes , 2002 .

[288]  Günter Schiller,et al.  Electrochemical characterization of vacuum plasma sprayed thin-film solid oxide fuel cells (SOFC) for reduced operating temperatures , 2002 .

[289]  F. Bonino,et al.  Study of lithium diffusion in RF sputtered Nickel–Vanadium mixed oxides thin films , 2002 .

[290]  Sangtae Kim,et al.  Space charge conduction: Simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria , 2003 .

[291]  G. Niklasson,et al.  Isothermal transient ionic current study of laminated electrochromic devices for smart window applications , 2004 .

[292]  Maria Strømme,et al.  Theoretical investigation of ion conduction in three-layered ion-conductor systems: Derivation of the isothermal transient ionic current and frequency-dependent impedance , 2003 .

[293]  Mathias Schulze,et al.  Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt–Ru anodes in a membrane fuel cell (PEFC) , 2003 .

[294]  E. Gonzalez,et al.  Catalysts for DMFC: relation between morphology and electrochemical performance , 2003 .

[295]  C. Lampert Large-Area Smart Glass And Integrated Photovoltaics , 2003 .

[296]  G. Blomgren Liquid electrolytes for lithium and lithium-ion batteries , 2003 .

[297]  K. Amine,et al.  Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells , 2003 .

[298]  J. Barker,et al.  Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries , 2003 .

[299]  M. Musiani,et al.  Evidence of coupling between film growth and metal dissolution in passivation processes , 2003 .

[300]  H. Ishikawa,et al.  AC-impedance measurements during thermal runaway process in several lithium/polymer batteries , 2003 .

[301]  X. Qiu,et al.  Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode , 2003 .

[302]  J. Jamnik Impedance spectroscopy of mixed conductors with semi-blocking boundaries , 2003 .

[303]  G. Pan,et al.  The electrochemical properties of MmNi3.6Co0.7Al0.3Mn0.4 alloy modified with carbon nanomaterials by ball milling , 2004 .

[304]  C. R. Derouin,et al.  N 87-29937 ADVANCES IN SOLID POLYMER ELECTROLYTE FUEL CELL TECHNOLOGY WITH LOW-PLATINUM-LOADING ELECTRODES , 2004 .

[305]  A. Hammouche,et al.  Monitoring state-of-charge of Ni–MH and Ni–Cd batteries using impedance spectroscopy , 2004 .

[306]  K. Funke,et al.  Modelling frequency-dependent conductivities and permittivities in the framework of the MIGRATION concept , 2004 .

[307]  O. Savadogo Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications☆ , 2004 .

[308]  D. Macdonald,et al.  An electrochemical impedance study of Alloy-22 in Nacl brine at elevated temperature : II. Reaction mechanism analysis , 2004 .

[309]  J. C. Phillips,et al.  Topological derivation of shape exponents for stretched exponential relaxation. , 2004, The Journal of chemical physics.

[310]  T. Zeuthen,et al.  Potentials and small-signal impedances of platinum microelectrodesin vivo andin vitro , 1978, Medical and Biological Engineering and Computing.

[311]  Dispersion and Absorption in Dielectrics 1 , 2022 .