Selective effects of a 4‐oxystilbene derivative on wild and mutant neuronal chick α7 nicotinic receptor

[1]  M. Pallavicini,et al.  4‐Oxystilbene compounds are selective ligands for neuronal nicotinic αBungarotoxin receptors , 1998, British journal of pharmacology.

[2]  F. Eusebi,et al.  The neuronal α6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells , 1998, The European journal of neuroscience.

[3]  R. Papke,et al.  Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors. , 1997, The Journal of pharmacology and experimental therapeutics.

[4]  V. Gerzanich,et al.  Mutation Causing Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Alters Ca2+ Permeability, Conductance, and Gating of Human α4β2 Nicotinic Acetylcholine Receptors , 1997, The Journal of Neuroscience.

[5]  T. Lewis,et al.  The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type , 1997, The Journal of physiology.

[6]  J. Changeux,et al.  Paradoxical allosteric effects of competitive inhibitors on neuronal α7 nicotinic receptor mutants , 1997, Neuroreport.

[7]  C. Gotti,et al.  Human neuronal nicotinic receptors , 1997, Progress in Neurobiology.

[8]  J. Changeux,et al.  Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders , 1997, Current Opinion in Neurobiology.

[9]  Francesca Grassi,et al.  α5 Subunit forms functional α3β4α5 nAChRs in transfected human cells , 1997 .

[10]  R. Mantegazza,et al.  Detection of antibody classes and subpopulations in Myasthenia gravis patients using a new nonradioactive enzyme immunoassay , 1997, Muscle & nerve.

[11]  R. Longhi,et al.  α7 and α8 Nicotinic Receptor Subtypes Immunopurified from Chick Retina have Different Immunological, Pharmacological and Functional Properties , 1997 .

[12]  J. Forsayeth,et al.  Formation of Oligomers Containing the β3 and β4 Subunits of the Rat Nicotinic Receptor , 1997, The Journal of Neuroscience.

[13]  E X Albuquerque,et al.  Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. , 1997, The Journal of pharmacology and experimental therapeutics.

[14]  S. Wonnacott,et al.  Presynaptic nicotinic ACh receptors , 1997, Trends in Neurosciences.

[15]  J P Changeux,et al.  Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. , 1996, The EMBO journal.

[16]  R. Miledi,et al.  Threonine-for-leucine mutation within domain M2 of the neuronal alpha(7) nicotinic receptor converts 5-hydroxytryptamine from antagonist to agonist. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Role,et al.  Nicotinic Receptors in the Development and Modulation of CNS Synapses , 1996, Neuron.

[18]  S. Heinemann,et al.  Molecular and Cellular Aspects of Nicotine Abuse , 1996, Neuron.

[19]  D. Bertrand,et al.  Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. , 1996, The Journal of physiology.

[20]  Pb Sargent,et al.  Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R Anand,et al.  Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors. , 1995, Molecular pharmacology.

[22]  S. Heinemann,et al.  alpha-Conotoxin ImI exhibits subtype-specific nicotinic acetylcholine receptor blockade: preferential inhibition of homomeric alpha 7 and alpha 9 receptors. , 1995, Molecular pharmacology.

[23]  F. Eusebi,et al.  Protein kinase C modulates exogenous acetylcholine current in Xenopus oocytes , 1995, Journal of neuroscience research.

[24]  D. K. Berg,et al.  Neurons Can Maintain Multiple Classes of Nicotinic Acetylcholine Receptors Distinguished by Different Subunit Compositions (*) , 1995, The Journal of Biological Chemistry.

[25]  R. Corriveau,et al.  Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  S. Arneric,et al.  Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics. , 1995, Life sciences.

[27]  D. Colquhoun,et al.  Comparison of neuronal nicotinic receptors in rat sympathetic neurones with subunit pairs expressed in Xenopus oocytes. , 1994, The Journal of physiology.

[28]  D. Bertrand,et al.  Pharmacology and Biophysical Properties of α7 and α7 ‐ α8 α‐Bungarotoxin Receptor Subtypes Immunopurified from the Chick Optic Lobe , 1994 .

[29]  J. Changeux,et al.  Stratification of the channel domain in neurotransmitter receptors. , 1993, Current opinion in cell biology.

[30]  J. Lindstrom,et al.  Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non‐identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex , 1993, FEBS letters.

[31]  A. Vernallis,et al.  Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes , 1993, Neuron.

[32]  A. Vernallis,et al.  The α5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain , 1992, Neuron.

[33]  J P Changeux,et al.  Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Changeux,et al.  Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor , 1991, Nature.

[35]  P. Whiting,et al.  Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts. , 1991, Molecular pharmacology.

[36]  K. Keyser,et al.  Expression of nicotinic acetylcholine receptor subtypes in brain and retina. , 1991, Brain research. Molecular brain research.

[37]  D. Bertrand,et al.  A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX , 1990, Neuron.

[38]  G. Lunt,et al.  Methyllycaconitine: a selective probe for neuronal α‐bungarotoxin binding sites , 1990 .

[39]  P. Whiting,et al.  Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  P. Whiting,et al.  Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  L. Swanson,et al.  Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: Species, subunit and region specificity , 1986, Journal of Neuroimmunology.

[42]  D Rodbard,et al.  Ligand: a versatile computerized approach for characterization of ligand-binding systems. , 1980, Analytical biochemistry.

[43]  D. Colquhoun,et al.  Effects of inhibitors of the binding of iodinated alpha-bungarotoxin to acetylcholine receptors in rat muscle. , 1976, Molecular pharmacology.

[44]  P. Mantegazza,et al.  Central antinicotinic activity of 4-oxystilbene and 4-oxydiphenylethane derivatives. , 1955, Archives internationales de pharmacodynamie et de therapie.

[45]  L. Role,et al.  Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. , 1995, Annual review of physiology.

[46]  P. Sargent,et al.  The diversity of neuronal nicotinic acetylcholine receptors. , 1993, Annual review of neuroscience.

[47]  D. Bertrand,et al.  Electrophysiology of Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes following Nuclear Injection of Genes or cDNAs , 1991 .

[48]  E. Kandel Fidia Research Foundation neuroscience award lectures , 1987 .