Over 100% magnetoresistance ratio at room temperature in magnetic tunnel junctions with CuGaSe2 spacer layer

We investigated the structure and magneto-transport properties of magnetic tunnel junctions (MTJs) consisting of half-metallic Co2FeGa0.5Ge0.5 ferromagnetic electrodes and a semiconductive CuGaSe2 interlayer. The magnetoresistance (MR) ratio reaches more than 100% at room temperature and nearly 250% at 30 K with the resistance area product (RA) smaller than 1 Ω μm2. Microstructural analysis clarified that Co and Fe atoms diffuse into the CuGaSe2 layer, which can be a possible reason for the scattering of RA values but poorly affect the MR ratio itself. Our findings stress the potential of semiconductor barriers in MTJs for spintronics application that requires low RA.We investigated the structure and magneto-transport properties of magnetic tunnel junctions (MTJs) consisting of half-metallic Co2FeGa0.5Ge0.5 ferromagnetic electrodes and a semiconductive CuGaSe2 interlayer. The magnetoresistance (MR) ratio reaches more than 100% at room temperature and nearly 250% at 30 K with the resistance area product (RA) smaller than 1 Ω μm2. Microstructural analysis clarified that Co and Fe atoms diffuse into the CuGaSe2 layer, which can be a possible reason for the scattering of RA values but poorly affect the MR ratio itself. Our findings stress the potential of semiconductor barriers in MTJs for spintronics application that requires low RA.

[1]  M. Tanaka,et al.  Quantum size effect and tunneling magnetoresistance in ferromagnetic-semiconductor quantum heterostructures , 2006, cond-mat/0608357.

[2]  Masaaki Tanaka,et al.  GaMnAs-based magnetic tunnel junctions with an AlMnAs barrier , 2009, 0912.3045.

[3]  M. Shirai,et al.  Enhanced half-metallicity of off-stoichiometric quaternary Heusler alloy Co-2(Mn, Fe)Si investigated through saturation magnetization and tunneling magnetoresistance , 2016 .

[4]  A. Umerski,et al.  Theory of tunneling magnetoresistance of Fe/GaAs/Fe(001) junctions , 2010 .

[5]  T. Scheike,et al.  Li-substituted MgAl2O4 barriers for spin-dependent coherent tunneling , 2016 .

[6]  K. Hono,et al.  Giant interfacial perpendicular magnetic anisotropy in Fe /CuIn 1 -x Ga x Se 2 beyond Fe/MgO , 2017, 1707.02694.

[7]  T. Kanashima,et al.  All-epitaxial Co2FeSi/Ge/Co2FeSi trilayers fabricated by Sn-induced low-temperature epitaxy , 2016 .

[8]  Ikhtiar,et al.  Large magnetoresistance in Heusler-alloy-based epitaxial magnetic junctions with semiconducting Cu(In0.8Ga0.2)Se2 spacer , 2016 .

[9]  Bias dependent inversion of tunneling magnetoresistance in Fe/GaAs/Fe tunnel junctions , 2006, cond-mat/0607670.

[10]  High output voltage of magnetic tunnel junctions with a Cu(In0.8Ga0.2)Se2 semiconducting barrier with a low resistance–area product , 2017 .

[11]  Ballistic spin injection and detection in Fe/semiconductor/Fe junctions , 2002, cond-mat/0203538.

[12]  I. Mártil,et al.  Structural, electrical, and optical properties of CuGaSe2 rf sputtered thin films , 1990 .

[13]  J. Inoue,et al.  Bias dependence of spin-polarized tunnel current through Fe/GaAs and Fe/GaAs/Fe junctions , 2010 .

[14]  P. Voyles,et al.  Influence of film composition in quaternary Heusler alloy Co2(Mn,Fe)Si thin films on tunnelling magnetoresistance of Co2(Mn,Fe)Si/MgO-based magnetic tunnel junctions , 2015 .

[15]  H. Saito,et al.  Origin of the tunnel anisotropic magnetoresistance in Ga(1-x)Mn(x)As/ZnSe/Ga(1-x)Mn(x)As magnetic tunnel junctions of II-VI/III-V heterostructures. , 2005, Physical review letters.

[16]  Hideo Ohno,et al.  Tunneling magnetoresistance in (Ga,Mn)As-based heterostructures with a GaAs barrier , 2004 .

[17]  Mark van Schilfgaarde,et al.  Reversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: first-principles calculations. , 2007, Physical review letters.

[18]  I. Ikhtiar Temperature dependence of magneto-transport properties in Co 2 Fe(Ga 0.5 Ge 0.5 )/Cu lateral spin valves , 2015 .

[19]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[20]  Y. Miura,et al.  First-principles study on magnetic tunneling junctions with semiconducting CuInSe2 and CuGaSe2 barriers , 2016, 1609.07713.

[21]  MgGa2O4 spinel barrier for magnetic tunnel junctions: Coherent tunneling and low barrier height , 2016, 1611.03606.

[22]  Ballistic Spin Injection from Fe(001) into ZnSe and GaAs , 2002, cond-mat/0201280.

[23]  W. Wegscheider,et al.  Spin polarized tunneling through single-crystal GaAs(001) barriers , 2002 .

[24]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[25]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[26]  A. Panchula,et al.  Magnetic tunnel junctions with ZnSe barriers , 2003 .

[27]  Shinji Yuasa,et al.  High Magnetoresistance in Fully Epitaxial Magnetic Tunnel Junctions with a SemiconductingGaOxTunnel Barrier , 2016 .

[28]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[29]  M. Miyao,et al.  Atomically Controlled Epitaxial Growth of Single-Crystalline Germanium Films on a Metallic Silicide , 2012, 1210.1027.