Coaxial Triple-Layered versus Helical Be6 B11- Clusters: Dual Structural Fluxionality and Multifold Aromaticity.

Two low-lying structures are unveiled for the Be6 B11- nanocluster system that are virtually isoenergetic. The first, triple-layered cluster has a peripheral B11 ring as central layer, being sandwiched by two Be3 rings in a coaxial fashion, albeit with no discernible interlayer Be-Be bonding. The B11 ring revolves like a flexible chain even at room temperature, gliding freely around the Be6 prism. At elevated temperatures (1000 K), the Be6 core itself also rotates; that is, two Be3 rings undergo relative rotation or twisting with respect to each other. Bonding analyses suggest four-fold (π and σ) aromaticity, offering a dilute and fluxional electron cloud that lubricates the dynamics. The second, helix-type cluster contains a B11 helical skeleton encompassing a distorted Be6 prism. It is chiral and is the first nanosystem with a boron helix. Molecular dynamics also shows that at high temperature the helix cluster readily converts into the triple-layered one.

[1]  Lai‐Sheng Wang,et al.  All-boron analogues of aromatic hydrocarbons: B17- and B18-. , 2011, The Journal of chemical physics.

[2]  Joaquín Peña,et al.  A hierarchical algorithm for molecular similarity (H‐FORMS) , 2015, J. Comput. Chem..

[3]  William Tiznado,et al.  Stop rotating! One substitution halts the B19₁₉⁻ motor. , 2014, Chemical communications.

[4]  Lai‐Sheng Wang,et al.  Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of CoB12(-) and RhB12(-). , 2014, The journal of physical chemistry. A.

[5]  Hua‐Jin Zhai,et al.  Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread. , 2016, Physical Chemistry, Chemical Physics - PCCP.

[6]  Hua‐Jin Zhai,et al.  B11(-): a moving subnanoscale tank tread. , 2015, Nanoscale.

[7]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[8]  BeB2nanostructures: A density functional study , 2005 .

[9]  Alexander I Boldyrev,et al.  Comprehensive analysis of chemical bonding in boron clusters , 2007, J. Comput. Chem..

[10]  Truong Ba Tai,et al.  Disk aromaticity of the planar and fluxional anionic boron clusters B20(-/2-). , 2012, Chemistry.

[11]  Sreekanta Debnath,et al.  Untersuchung der Struktur und Dynamik des B13+ mithilfe der Infrarot-Photodissoziationsspektroskopie , 2017 .

[12]  Jun Li,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[13]  Dominik Horinek,et al.  Artificial molecular rotors. , 2005, Chemical reviews.

[14]  Thomas Heine,et al.  Unravelling phenomenon of internal rotation in B13+ through chemical bonding analysis. , 2011, Chemical communications.

[15]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[16]  J. Oscar C. Jiménez-Halla,et al.  B19-: an aromatic Wankel motor. , 2010, Angewandte Chemie.

[17]  Lei Liu,et al.  Structure and bonding of IrB12−: converting a rigid boron B12 platelet to a Wankel motor , 2016 .

[18]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[19]  Jun Li,et al.  [B₃₀]⁻: a quasiplanar chiral boron cluster. , 2014, Angewandte Chemie.

[20]  Martin R. Saunders,et al.  Stochastic search for isomers on a quantum mechanical surface , 2004, J. Comput. Chem..

[21]  A. Kalemos The nature of the chemical bond in Be2+, Be2, Be2-, and Be3. , 2016, The Journal of chemical physics.

[22]  Lei Liu,et al.  Dynamical behavior of boron clusters. , 2016, Nanoscale.

[23]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[24]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[25]  Xiaowei Song,et al.  Structure and Fluxionality of B13+ Probed by Infrared Photodissociation Spectroscopy. , 2017, Angewandte Chemie.

[26]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[27]  Alexander I Boldyrev,et al.  A concentric planar doubly π-aromatic B₁₉⁻ cluster. , 2010, Nature chemistry.

[28]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[29]  Pratim K Chattaraj,et al.  B18(2-): a quasi-planar bowl member of the Wankel motor family. , 2014, Chemical communications.

[30]  B19−: ein aromatischer Wankel‐Motor , 2010 .

[31]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[32]  Gabriel Merino,et al.  Structural evolution of small gold clusters doped by one and two boron atoms , 2014, J. Comput. Chem..