Left invertibility of output-quantized systems: An application to cryptography

In this paper a secure communication method is proposed, based on left invertibility of output-quantized dynamical systems. The sender uses an output-quantized linear system with a feedback function to encode messages, which are sequences of inputs of the system. So left invertibility property enables the receiver to recover the messages. The secret key is formed by the system's parameters, including the feedback function. The use of quantization makes the cryptographic system work exactly, and without asymptotic estimates. Simulations of encoding-decoding procedure and results about security of the method are finally shown.

[1]  Antonio Bicchi,et al.  Left invertibility of discrete-time output-quantized systems: the linear case with finite inputs , 2011, Math. Control. Signals Syst..

[2]  James L. Massey,et al.  Inverses of Linear Sequential Circuits , 1968, IEEE Transactions on Computers.

[3]  L. Meier Estimation and control with quantized measurements , 1971 .

[4]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[5]  R. Brockett,et al.  The reproducibility of multivariable systems , 1964 .

[6]  L. Silverman Inversion of multivariable linear systems , 1969 .

[7]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[8]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[9]  R. Curry Estimation and Control with Quantized Measurements , 1970 .

[10]  J. Bertram The effect of quantization in sampled-feedback systems , 1958, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[11]  Antonio Bicchi,et al.  Left invertibility of discrete systems with finite inputs and quantised output , 2010, Int. J. Control.

[12]  Martin Hasler,et al.  Synchronization of chaotic systems and transmission of information , 1998 .

[13]  Ljupco Kocarev,et al.  Theory and practice of chaotic cryptography , 2007 .

[14]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[15]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[16]  Tao Yang,et al.  A SURVEY OF CHAOTIC SECURE COMMUNICATION SYSTEMS , 2004 .

[17]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[18]  Antonio Bicchi,et al.  On the Stabilization of Linear Systems Under Assigned I/O Quantization , 2007, IEEE Transactions on Automatic Control.

[19]  M. Sznaier,et al.  Feedback control of quantized constrained systems with applications to neuromorphic controllers design , 1994, IEEE Trans. Autom. Control..

[20]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[21]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[22]  Daniel Liberzon,et al.  On Invertibility of Switched Linear Systems , 2006, CDC.

[23]  J. Massey,et al.  Invertibility of linear time-invariant dynamical systems , 1969 .

[24]  Toshimitsu Ushio,et al.  Chaos communication using unknown input observers , 2001 .

[25]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[26]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[27]  Helmut Knebl,et al.  Introduction to Cryptography , 2002, Information Security and Cryptography.