Overlapping Schwarz methods with GenEO coarse spaces for indefinite and non-self-adjoint problems

Generalized eigenvalue problems on the overlap(GenEO) is a method for computing an operator-dependent spectral coarse space to be combined with local solves on subdomains to form a robust parallel domain decomposition preconditioner for elliptic PDEs. It has previously been proved, in the self-adjoint and positive-definite case, that this method, when used as a preconditioner for conjugate gradients, yields iteration numbers that are completely independent of the heterogeneity of the coefficient field of the partial differential operator. We extend this theory to the case of convection–diffusion–reaction problems, which may be nonself-adjoint and indefinite, and whose discretizations are solved with preconditioned GMRES. The GenEO coarse space is defined here using a generalized eigenvalue problem based on a self-adjoint and positive-definite subproblem. We prove estimates on GMRES iteration counts that are independent of the variation of the coefficient of the diffusion term in the operator and depend only very mildly on variations of the other coefficients. These are proved under the assumption that the subdomain diameter is sufficiently small and the eigenvalue tolerance for building the coarse space is sufficiently large. While the iteration number estimates do grow as the nonself-adjointness and indefiniteness of the operator increases, practical tests indicate the deterioration is much milder. Thus, we obtain an iterative solver that is efficient in parallel and very effective for a wide range of convection–diffusion–reaction problems.

[1]  Robert Scheichl,et al.  Novel Design and Analysis of Generalized Finite Element Methods Based on Locally Optimal Spectral Approximations , 2022, SIAM J. Numer. Anal..

[2]  Chupeng Ma,et al.  Error estimates for fully discrete generalized FEMs with locally optimal spectral approximations , 2021, ArXiv.

[3]  Nicole Spillane,et al.  Toward a new fully algebraic preconditioner for symmetric positive definite problems , 2021, ArXiv.

[4]  Peter Bastian,et al.  Multilevel Spectral Domain Decomposition , 2021, SIAM Journal on Scientific Computing.

[5]  I. Graham,et al.  GenEO coarse spaces for heterogeneous indefinite elliptic problems , 2021, ArXiv.

[6]  Robert Scheichl,et al.  Novel design and analysis of generalized FE methods based on locally optimal spectral approximations , 2021, ArXiv.

[7]  Pierre-Henri Tournier,et al.  A comparison of coarse spaces for Helmholtz problems in the high frequency regime , 2020, Comput. Math. Appl..

[8]  I. Graham,et al.  Domain decomposition preconditioners for high-order discretisations of the heterogeneous Helmholtz equation , 2020, IMA Journal of Numerical Analysis.

[9]  Victorita Dolean,et al.  On the Dirichlet-to-Neumann coarse space for solving the Helmholtz problem using domain decomposition , 2019, ENUMATH.

[10]  Fr'ed'eric Nataf Ljll,et al.  A GenEO Domain Decomposition method for Saddle Point problems , 2019, Comptes Rendus. Mécanique.

[11]  Axel Klawonn,et al.  Adaptive GDSW Coarse Spaces for Overlapping Schwarz Methods in Three Dimensions , 2019, SIAM J. Sci. Comput..

[12]  Emmanuel Agullo,et al.  Robust Preconditioners via Generalized Eigenproblems for Hybrid Sparse Linear Solvers , 2019, SIAM J. Matrix Anal. Appl..

[13]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[14]  Giovanni Leoni,et al.  A First Course in Sobolev Spaces: Second Edition , 2017 .

[15]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .

[16]  Yalchin Efendiev,et al.  On overlapping domain decomposition methods for high-contrast multiscale problems , 2017, 1705.09004.

[17]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[18]  Eero Vainikko,et al.  Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption , 2015, Math. Comput..

[19]  Frédéric Nataf,et al.  A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator , 2014, J. Comput. Appl. Math..

[20]  Robert Scheichl,et al.  Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2013, Numerische Mathematik.

[21]  T. Hou,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[22]  Frédéric Nataf,et al.  High performance domain decomposition methods on massively parallel architectures with freefem++ , 2012, J. Num. Math..

[23]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[24]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[25]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[26]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[27]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[28]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[29]  Xiao-Chuan Cai,et al.  Some observations on the l2 convergence of the additive Schwarz preconditioned GMRES method , 2002, Numer. Linear Algebra Appl..

[30]  M. Sarkis,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[31]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[32]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[33]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[34]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[35]  Joseph E. Pasciak,et al.  Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations , 2003, Math. Comput..

[36]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[37]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[38]  Junping Wang,et al.  Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions , 1996, Math. Comput..