Chemometric Methods in Process Analysis

Chemometrics may be loosely defined as the development and application of mathematical and statistical techniques to aid in the analysis of chemical data. The goal of chemometrics is to guide the chemist in the optimum extraction of chemically relevant information from a series of complex chemically oriented observations. To this end, this article addresses a wide array of chemometric tools that are applicable to industrial process analysis. The three main sections present statistical and mathematical tools in the context of univariate, multivariate, and multiway analyses. Each of the three sections discusses the benefits and limitations of qualitative analysis, quantitative analysis, and process monitoring with the class of data in question. Additional sections address the appropriate pretreatment of collected data to aid in efficient analysis and validation of the derived chemometric models. In these sections methods for background correction and instrument standardization are discussed.

[1]  K. Booksh,et al.  Monitoring anhydride and acid conversion in supercritical/hydrothermal water by in situ fiber-optic Raman spectroscopy , 1998 .

[2]  P. Geladi,et al.  Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat , 1985 .

[3]  H. M. Heise,et al.  On the efficiency of algorithms for multivariate linear calibration used in analytical spectroscopy , 1992 .

[4]  B. Kowalski,et al.  Improvement of multivariate calibration through instrument standardization , 1992 .

[5]  Bruce R. Kowalski,et al.  Piece-Wise Multiplicative Scatter Correction Applied to Near-Infrared Diffuse Transmittance Data from Meat Products , 1993 .

[6]  Romà Tauler,et al.  Multivariate resolution of rank‐deficient spectrophotometric data from first‐order kinetic decomposition reactions , 1998 .

[7]  B. Kowalski,et al.  Rank determination and analysis of non‐linear processes by global linearizing transformation , 1996 .

[8]  B. Kowalski,et al.  Theory of analytical chemistry , 1994 .

[9]  T. B. Blank,et al.  Transfer of Near-Infrared Multivariate Calibrations without Standards. , 1996, Analytical chemistry.

[10]  G. Kateman,et al.  Expert systems for multivariate calibration, trendsetters for the wide-spread use of chemometrics , 1992 .

[11]  Chris W. Brown,et al.  Calibration Transfer from Sample Cell to Fiber-Optic Probe , 1997 .

[12]  T. Næs,et al.  Locally weighted regression and scatter correction for near-infrared reflectance data , 1990 .

[13]  I. E. Frank A nonlinear PLS model , 1990 .

[14]  René Henrion,et al.  Multi-way principal components analysis of a complex data array resulting from physicochemical characterization of natural waters , 1992 .

[15]  E. V. Thomas,et al.  Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information , 1988 .

[16]  Paul Geladi,et al.  Analysis of multi-way (multi-mode) data , 1989 .

[17]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[18]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[19]  A. Lorber Error propagation and figures of merit for quantification by solving matrix equations , 1986 .

[20]  Jie Lin,et al.  Near-IR Calibration Transfer between Different Temperatures , 1998 .

[21]  B. Kowalski,et al.  Theory of medium‐rank second‐order calibration with restricted‐Tucker models , 1994 .

[22]  Bruce R. Kowalski,et al.  Second-order chemometric standardization for high-speed hyphenated gas chromatography: Analysis of GC/MS and comprehensive GCGC data , 1999 .

[23]  Karl S. Booksh,et al.  Calibration of Surface Plasmon Resonance Refractometers Using Locally Weighted Parametric Regression , 1997 .

[24]  D. Hassell,et al.  Process Analytical Chemistry for Spectroscopists , 1998 .

[25]  T. Isaksson,et al.  New approach for distance measurement in locally weighted regression , 1994 .

[26]  Bruce R. Kowalski,et al.  Nonlinear Multivariate Calibration Methods in Analytical Chemistry , 1993 .

[27]  Silvia Lanteri,et al.  ACE: A non-linear regression model , 1988 .

[28]  B. Kowalski,et al.  ChemNets: Theory and Application , 1995 .

[29]  Mark A. Arnold,et al.  Evaluation of Data Pretreatment and Model Building Methods for the Determination of Glucose from Near-Infrared Single-Beam Spectra , 1999 .

[30]  Nondestructive Characterizations of Polyethylene/Nylon Laminates by Near-Infrared Spectroscopy , 1993 .

[31]  Romà Tauler,et al.  Multivariate curve resolution applied to three‐way trilinear data: Study of a spectrofluorimetric acid–base titration of salicylic acid at three excitation wavelengths , 1998 .

[32]  John H. Kalivas,et al.  Which principal components to utilize for principal component regression , 1992 .

[33]  Linda B. McGown,et al.  Resolution of multicomponent fluorescent mixtures by analysis of the excitation–emission–frequency array , 1990 .

[34]  The relationship of closure, mean centering and matrix rank interpretation , 1992 .

[35]  T. Næs,et al.  Locally Weighted Regression in Diffuse Near-Infrared Transmittance Spectroscopy , 1992 .

[36]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[37]  T. Hirschfeld,et al.  The hy-phen-ated methods , 1980 .

[38]  Stephen P. Gurden,et al.  Resolution of infrared spectra of mixtures of potential organic workplace pollutants by factor analysis , 1994 .

[39]  J. Kalivas,et al.  Selectivity and Related Measures for nth-Order Data. , 1996, Analytical chemistry.

[40]  E. Davidson,et al.  Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer , 1978 .

[41]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[42]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[43]  K. Booksh,et al.  Mathematical Alignment of Wavelength-Shifted Optical Spectra for Qualitative and Quantitative Analysis , 1996 .

[44]  Svante Wold,et al.  Chemometrics; what do we mean with it, and what do we want from it? , 1995 .

[45]  B. Kowalski,et al.  Advances in second‐order calibration , 1993 .

[46]  Bruce R. Kowalski,et al.  MARS: A tutorial , 1992 .

[47]  R. Shrager Chemical transitions measured by Spectra and resolved using singular value decomposition , 1986 .

[48]  Erik Johansson,et al.  Multivariate process and quality monitoring applied to an electrolysis process: Part I. Process supervision with multivariate control charts , 1998 .

[49]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-III Model-free analysis of spectrophotometric and ESR titrations. , 1985, Talanta.

[50]  Bruce R. Kowalski,et al.  Calibration method choice by comparison of model basis functions to the theoretical instrumental response function , 1997 .

[51]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[52]  Suzanne Winsberg,et al.  Monotone spline transformations for dimension reduction , 1983 .

[53]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[54]  Age K. Smilde,et al.  Three‐way methods for the calibration of chromatographic systems: Comparing PARAFAC and three‐way PLS , 1991 .

[55]  B. Kowalski,et al.  The parsimony principle applied to multivariate calibration , 1993 .

[56]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[57]  S. Wold Nonlinear partial least squares modelling II. Spline inner relation , 1992 .

[58]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[59]  Age K. Smilde,et al.  Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-Based Chemical Sensor. 3. Medium-Rank Second-Order Calibration with Restricted Tucker Models , 1994 .

[60]  P. Gemperline,et al.  Appearance of discontinuities in spectra transformed by the piecewise direct instrument standardization procedure. , 1996, Analytical chemistry.

[61]  Avraham Lorber,et al.  Analytical figures of merit for tensorial calibration , 1997 .

[62]  Steven D. Brown,et al.  Standardization of Fiber-Optic Probes for Near-Infrared Multivariate Calibrations , 1998 .

[63]  John B. Cooper,et al.  Chemometric analysis of Raman spectroscopic data for process control applications , 1999 .

[64]  Ildiko E. Frank,et al.  Modern nonlinear regression methods , 1995 .

[65]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[66]  W. Windig Self-modeling mixture analysis of spectral data with continuous concentration profiles , 1992 .

[67]  D. Steele,et al.  On the extraction of spectra of components from spectra of mixtures. A development in factor theory. II , 1990 .

[68]  Bruce R. Kowalski,et al.  An extension of the multivariate component-resolution method to three components , 1985 .

[69]  K. Booksh,et al.  Extension and Application of Univariate Figures of Merit to Multivariate Calibration , 1995 .

[70]  L. E. Wangen,et al.  A theoretical foundation for the PLS algorithm , 1987 .

[71]  Steven D. Brown,et al.  Has the chemometrics revolution ended? Some views on the past, present and future of chemometrics , 1995 .

[72]  Bruce R. Kowalski,et al.  The effect of mean centering on prediction in multivariate calibration , 1992 .

[73]  E. A. Sylvestre,et al.  Curve Resolution Using a Postulated Chemical Reaction , 1974 .

[74]  R. Manne Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .

[75]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .