Single- and Double-Layer Microwave Absorbers of Cobalt Ferrite and Graphite Composite at Gigahertz Frequency

[1]  Kun Liang,et al.  Preparation and microwave absorbing properties of graphene oxides/ferrite composites , 2017, Applied Physics A.

[2]  A. Ghasemi,et al.  Influence of carbon nanotubes on structural, magnetic and electromagnetic characteristics of MnMgTiZr substituted barium hexaferrite nanoparticles , 2017 .

[3]  Qingliang Liao,et al.  Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption , 2016, Scientific Reports.

[4]  Ravi Panwar,et al.  An efficient use of waste material for development of cost-effective broadband radar wave absorber , 2015 .

[5]  A. Durmuş,et al.  Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material , 2015, Journal of Materials Science.

[6]  R. Panwar,et al.  Design and experimental verification of a thin broadband nanocomposite multilayer microwave absorber using genetic algorithm based approach , 2014 .

[7]  G. C. Nayak,et al.  Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black , 2014 .

[8]  P. Mohanan,et al.  Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2–12 GHz applications , 2014 .

[9]  K. Khan Microwave Absorption Properties of Radar Absorbing Nanosized Cobalt Ferrites for High Frequency Applications , 2014 .

[10]  F. M. Idris,et al.  Evolving microstructure, magnetic properties and phase transition in a mechanically alloyed Ni0.5Zn0.5Fe2O4 single sample , 2014 .

[11]  M. Hashim,et al.  Broadening of EM Energy-Absorption Frequency Band by Micrometer-to-Nanometer Grain Size Reduction in NiZn Ferrite , 2013, IEEE Transactions on Magnetics.

[12]  P. Mohanan,et al.  A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications , 2013 .

[13]  Wang Yi-ming,et al.  Enhanced absorption properties of ordered mesoporous carbon/Co-doped ordered mesoporous carbon double-layer absorbers , 2013 .

[14]  M. Hashim,et al.  Comparative studies on the structure and electromagnetic properties of Ni−Zn ferrites prepared via co-precipitation and conventional ceramic processing routes , 2010 .

[15]  Z. Abbas,et al.  X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering , 2010 .

[16]  J. Sláma,et al.  Particle Size and Concentration Effect on Permeability and EM-Wave Absorption Properties of Hybrid Ferrite Polymer Composites , 2010, IEEE Transactions on Magnetics.

[17]  Fashen Li,et al.  Microwave absorption and Mössbauer studies of Fe3O4 nanoparticles , 2009 .

[18]  P. Vasambekar,et al.  DC resistivity of Ni–Zn ferrites prepared by oxalate precipitation method , 2008 .

[19]  L. C. Folgueras,et al.  Multilayer radar absorbing material processing by using polymeric nonwoven and conducting polymer , 2008 .

[20]  M. Gregori,et al.  Microwave-absorbing properties of Ni0.50–xZn0.50−xMe2xFe2O4 (Me=Cu, Mn, Mg) ferrite–wax composite in X-band frequencies , 2008 .

[21]  T. C. Goel,et al.  Complex permittivity and microwave absorption properties of a composite dielectric absorber , 2006 .

[22]  F. Gazeau,et al.  Quasi-elastic neutron scattering on γ-Fe2O3 nanoparticles , 1997 .

[23]  K. Hatakeyama,et al.  Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers , 1984 .

[24]  J. Bobick,et al.  Hydroxylapatite synthesis and characterization in dense polycrystalline form , 1976 .

[25]  R. L. Coble,et al.  Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models , 1961 .