Development of an automated setup for dynamic evaluation of DC motor characteristics

Torque, speed and power are vital parameters for electric motor based applications. Extraction of motor torque-speed characteristics in real time involves complex and expensive instrumentation. An automated setup to evaluate such vital parameters is very essential in various research areas like power generation, energy conversion, vehicular technology etc. This paper presents a low cost automatic setup to evaluate any direct current motor characteristics on a dynamic application platform. The developed system comprises of sensors, signal conditioning system, data acquisition system and motor control unit. The system has been validated with a most commonly available shunt motor. The results obtained from the system leads to the conclusion that the proposed system is simple, reliable and cost effective which can be used to study any dynamically changing motor characteristics. The system can be effectively used in the development of various sophisticated test bed designs for pure electric and hybrid electric vehicles.

[1]  João Carlos Basilio,et al.  State-space parameter identification in a second control laboratory , 2004, IEEE Transactions on Education.

[2]  S.S. Saab,et al.  Parameter identification of a DC motor: an experimental approach , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[3]  A. Kaddouri,et al.  Multiobjective genetic estimation of DC motor parameters and load torque , 2004, 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04..

[4]  William Lord,et al.  DC Servomotors-Modeling and Parameter Determination , 1977, IEEE Transactions on Industry Applications.

[5]  K-L. Areerak,et al.  Parameters identification of separately excited DC motor using adaptive tabu search technique , 2010, 2010 International Conference on Advances in Energy Engineering.

[6]  M. W. Dunnigan,et al.  Parameter estimation of an induction machine using a chaos particle swarm optimization algorithm , 2010 .

[7]  Dorin Sendrescu,et al.  Parameter identification of a DC motor via distribution based approach , 2012, 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR).

[8]  S. Ho,et al.  Fast computation of torque-speed characteristics of induction machines , 2015, 2015 IEEE Magnetics Conference (INTERMAG).

[9]  John Y. Hung Parameter estimation using sensitivity points: tutorial and experiment , 2001, IEEE Trans. Ind. Electron..

[10]  Jonathan Becedas,et al.  On-Line Fast Algebraic Parameter and State Estimation for a DC Motor Applied to Adaptive Control , 2008 .

[11]  Mohamed Rachid Mekideche,et al.  Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor , 2009 .

[12]  Ahmed Rubaai,et al.  Online identification and control of a DC motor using learning adaptation of neural networks , 2000 .

[13]  P. Geethanjali,et al.  PMDC Motor Parameter Estimation Using Bio-Inspired Optimization Algorithms , 2017, IEEE Access.

[14]  Kumpati S. Narendra,et al.  Neural Networks In Dynamical Systems , 1990, Other Conferences.

[15]  J. Amarnath,et al.  Speed torque characteristics of brushless DC motor in either direction on load using ARM controller , 2011, ISGT2011-India.