Maximum Likelihood Algorithms for Generalized Linear Mixed Models

Abstract Maximum likelihood algorithms are described for generalized linear mixed models. I show how to construct a Monte Carlo version of the EM algorithm, propose a Monte Carlo Newton-Raphson algorithm, and evaluate and improve the use of importance sampling ideas. Calculation of the maximum likelihood estimates is feasible for a wide variety of problems where they were not previously. I also use the Newton-Raphson algorithm as a framework to compare maximum likelihood to the “joint-maximization” or penalized quasi-likelihood methods and explain why the latter can perform poorly.

[1]  S. R. Searle,et al.  The estimation of environmental and genetic trends from records subject to culling. , 1959 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[4]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[5]  Robert W. Mee,et al.  A mixed-model procedure for analyzing ordered categorical data , 1984 .

[6]  A. L. Rae,et al.  The analysis of binomial data by a generalized linear mixed model , 1985 .

[7]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[8]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[9]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[10]  R. Schall Estimation in generalized linear models with random effects , 1991 .

[11]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[12]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[13]  Martin Abba Tanner,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .

[14]  Bradley P. Carlin,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods (Martin A. Tanner) , 1993, SIAM Rev..

[15]  Russell D. Wolfinger,et al.  Laplace's approximation for nonlinear mixed models. , 1993 .

[16]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[17]  A. Gelfand,et al.  Maximum-likelihood estimation for constrained- or missing-data models , 1993 .

[18]  C. Geyer Estimating Normalizing Constants and Reweighting Mixtures , 1994 .

[19]  C. McCulloch Maximum Likelihood Variance Components Estimation for Binary Data , 1994 .

[20]  G. Fitzmaurice,et al.  A caveat concerning independence estimating equations with multivariate binary data. , 1995, Biometrics.

[21]  K. Chan,et al.  Monte Carlo EM Estimation for Time Series Models Involving Counts , 1995 .

[22]  C. McCulloch,et al.  A Note on the Existence of the Posterior Distribution for a Class of Mixed Models for Binomial Responses , 1995 .

[23]  P. Diggle Analysis of Longitudinal Data , 1995 .

[24]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .