The functional landscape of the human phosphoproteome

[1]  David E. James,et al.  Illuminating the dark phosphoproteome , 2019, Science Signaling.

[2]  M. Pellegrini,et al.  Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set , 2019, Nature Communications.

[3]  Bin Zhang,et al.  15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms , 2018, Nucleic Acids Res..

[4]  Maria Jesus Martin,et al.  SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins , 2018, Nucleic Acids Res..

[5]  Cole H. Christie,et al.  Protein Data Bank: the single global archive for 3D macromolecular structure data , 2018, Nucleic acids research.

[6]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[7]  Omar Wagih,et al.  A resource of variant effect predictions of single nucleotide variants in model organisms , 2018, Molecular systems biology.

[8]  M. Mann,et al.  Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. , 2018, Developmental cell.

[9]  A. Gavin,et al.  Effects of Acetylation and Phosphorylation on Subunit Interactions in Three Large Eukaryotic Complexes* , 2018, Molecular & Cellular Proteomics.

[10]  V. G. Panse,et al.  Conserved phosphorylation hotspots in eukaryotic protein domain families , 2018, Nature Communications.

[11]  M. Savitski,et al.  Thermal proteome profiling in bacteria: probing protein state in vivo , 2018, Molecular systems biology.

[12]  Matthias Mann,et al.  In vivo brain GPCR signaling elucidated by phosphoproteomics , 2018, Science.

[13]  Peer Bork,et al.  Pervasive Protein Thermal Stability Variation during the Cell Cycle , 2018, Cell.

[14]  The Uniprot Consortium UniProt: the universal protein knowledgebase , 2018, Nucleic acids research.

[15]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[16]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[17]  Nuno A. Fonseca,et al.  Transcription Factor Activities Enhance Markers of Drug Sensitivity in Cancer. , 2018, Cancer research.

[18]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[19]  Matthew J. Betts,et al.  Systematic identification of phosphorylation-mediated protein interaction switches , 2017, PLoS Comput. Biol..

[20]  Thomas A. Hopf,et al.  Mutation effects predicted from sequence co-variation , 2017, Nature Biotechnology.

[21]  Julio Saez-Rodriguez,et al.  OmniPath: guidelines and gateway for literature-curated signaling pathway resources , 2016, Nature Methods.

[22]  Uwe Sauer,et al.  Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae , 2016, BMC Systems Biology.

[23]  Judit Villén,et al.  Evolution of protein phosphorylation across 18 fungal species , 2016, Science.

[24]  Pedro Beltrão,et al.  Benchmarking substrate-based kinase activity inference using phosphoproteomic data , 2016, bioRxiv.

[25]  Matthew P Torres,et al.  Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease , 2016, Molecular & Cellular Proteomics.

[26]  Ruedi Aebersold,et al.  Mass-spectrometric exploration of proteome structure and function , 2016, Nature.

[27]  Joel Selkrig,et al.  An atlas of human kinase regulation , 2016, Molecular Systems Biology.

[28]  Mariano J. Alvarez,et al.  Network-based inference of protein activity helps functionalize the genetic landscape of cancer , 2016, Nature Genetics.

[29]  Michael L. Gatza,et al.  Proteogenomics connects somatic mutations to signaling in breast cancer , 2016, Nature.

[30]  Albert J. Vilella,et al.  Ensembl comparative genomics resources , 2016, Database : the journal of biological databases and curation.

[31]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[32]  Toby J. Gibson,et al.  ELM 2016—data update and new functionality of the eukaryotic linear motif resource , 2015, Nucleic Acids Res..

[33]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[34]  P. Ng,et al.  SIFT missense predictions for genomes , 2015, Nature Protocols.

[35]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[36]  Debora S. Marks,et al.  Quantification of the effect of mutations using a global probability model of natural sequence variation , 2015, 1510.04612.

[37]  J. Chin,et al.  Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. , 2015, Nature chemical biology.

[38]  M. Taira,et al.  The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes , 2015, PloS one.

[39]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[40]  Damian Szklarczyk,et al.  Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell‐lines , 2015, Proteomics.

[41]  S. Michnick,et al.  A cell-signaling network temporally resolves specific versus promiscuous phosphorylation. , 2015, Cell reports.

[42]  Gary D Bader,et al.  Evolutionary Constraint and Disease Associations of Post-Translational Modification Sites in Human Genomes , 2015, PLoS genetics.

[43]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[44]  David T. Jones,et al.  DISOPRED3: precise disordered region predictions with annotated protein-binding activity , 2014, Bioinform..

[45]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[46]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[47]  G. Baillie,et al.  PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. , 2014, Biochimica et biophysica acta.

[48]  G. Drewes,et al.  Tracking cancer drugs in living cells by thermal profiling of the proteome , 2014, Science.

[49]  M. Mann,et al.  Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. , 2014, Cell reports.

[50]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[51]  L. Jensen,et al.  KinomeXplorer: an integrated platform for kinome biology studies , 2014, Nature Methods.

[52]  Guomin Liu,et al.  SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. , 2014, Journal of proteomics.

[53]  C. Orengo,et al.  Stability-activity tradeoffs constrain the adaptive evolution of RubisCO , 2014, Proceedings of the National Academy of Sciences.

[54]  Pornpimol Charoentong,et al.  High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer , 2014, BMC Cancer.

[55]  P. Bork,et al.  Evolution and functional cross‐talk of protein post‐translational modifications , 2013, Molecular systems biology.

[56]  G. Crabtree,et al.  Creating a neural specific chromatin landscape by npBAF and nBAF complexes , 2013, Current Opinion in Neurobiology.

[57]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[58]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[59]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[60]  J. Frahm,et al.  Chromatin regulation by BAF170 controls cerebral cortical size and thickness. , 2013, Developmental cell.

[61]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[62]  P. Aloy,et al.  Interactome3D: adding structural details to protein networks , 2013, Nature Methods.

[63]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[64]  R. Yasuda,et al.  Modified SH2 domain to phototrap and identify phosphotyrosine proteins from subcellular sites within cells , 2012, Proceedings of the National Academy of Sciences.

[65]  W. Lim,et al.  Systematic Functional Prioritization of Protein Posttranslational Modifications , 2012, Cell.

[66]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[67]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[68]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[69]  A. Panchenko,et al.  Phosphorylation in protein-protein binding: effect on stability and function. , 2011, Structure.

[70]  R. Bago,et al.  Binding to Syntenin-1 Protein Defines a New Mode of Ubiquitin-based Interactions Regulated by Phosphorylation* , 2011, The Journal of Biological Chemistry.

[71]  N. Delhomme,et al.  Seamless Gene Tagging by Endonuclease-Driven Homologous Recombination , 2011, PloS one.

[72]  Y. Jang,et al.  Phosphorylation of Ran-binding Protein-1 by Polo-like Kinase-1 Is Required for Interaction with Ran and Early Mitotic Progression* , 2011, The Journal of Biological Chemistry.

[73]  Vanessa E. Gray,et al.  Rampant purifying selection conserves positions with posttranslational modifications in human proteins. , 2011, Molecular biology and evolution.

[74]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[75]  N. Hernandez,et al.  mTORC1 Directly Phosphorylates and Regulates Human MAF1 , 2010, Molecular and Cellular Biology.

[76]  N. Schork,et al.  Kinase mutations in human disease: interpreting genotype–phenotype relationships , 2010, Nature Reviews Genetics.

[77]  J. Chelly,et al.  Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. , 2009, Trends in genetics : TIG.

[78]  J. Olson,et al.  Comparative Genome-Wide Screening Identifies a Conserved Doxorubicin Repair Network That Is Diploid Specific in Saccharomyces cerevisiae , 2009, PloS one.

[79]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[80]  A. Represa,et al.  Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria , 2009, Nature Genetics.

[81]  C. Landry,et al.  Weak functional constraints on phosphoproteomes. , 2009, Trends in genetics : TIG.

[82]  C. Worby,et al.  The fic domain: regulation of cell signaling by adenylylation. , 2009, Molecular cell.

[83]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[84]  Susan S. Taylor,et al.  Congenital disease SNPs target lineage specific structural elements in protein kinases , 2008, Proceedings of the National Academy of Sciences.

[85]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[86]  Hermann Schindelin,et al.  Studies on peptide:N-glycanase–p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation , 2007, Proceedings of the National Academy of Sciences.

[87]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[88]  Carolina Perez-Iratxeta,et al.  Gene function in early mouse embryonic stem cell differentiation , 2007, BMC Genomics.

[89]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[90]  Michael R. Seringhaus,et al.  Predicting essential genes in fungal genomes. , 2006, Genome research.

[91]  Pierre Baldi,et al.  SCRATCH: a protein structure and structural feature prediction server , 2005, Nucleic Acids Res..

[92]  V. Staiger,et al.  Differentiation of mouse embryonic stem cells into a defined neuronal lineage , 2004, Nature Neuroscience.

[93]  Conrad C. Huang,et al.  MODBASE, a database of annotated comparative protein structure models, and associated resources. , 2004, Nucleic acids research.

[94]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[95]  E. Wingender,et al.  MATCH: A tool for searching transcription factor binding sites in DNA sequences. , 2003, Nucleic acids research.

[96]  C. Marth,et al.  Prognostic significance of signal transducer and activator of transcription 1 activation in breast cancer. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[97]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[98]  P. Baldi,et al.  Prediction of coordination number and relative solvent accessibility in proteins , 2002, Proteins.

[99]  Pierre Baldi,et al.  Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles , 2002, Proteins.

[100]  J. Friedman Stochastic gradient boosting , 2002 .

[101]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[102]  Alexander E. Kel,et al.  MATCHTM: a tool for searching transcription factor binding sites in DNA sequences , 2003, Nucleic Acids Res..

[103]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[104]  W. V. van Blitterswijk,et al.  Diacylglycerol Kinase θ Binds to and Is Negatively Regulated by Active RhoA* , 1999, The Journal of Biological Chemistry.

[105]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[106]  J. Darnell,et al.  Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation , 1995, Cell.

[107]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.