Membrane technologies for CO2 separation

Today, all the existing coal-fired power plants present over the world emit about 2 billion tons of CO2 per year. The identification of a capture process which would fit the needs of target separation performances, together with a minimal energy penalty, is a key issue. Because of their fundamental engineering and economic advantages over competing separation technologies, membrane operations are, now, being explored for CO2 capture from power plant emissions.The aim of this work is to provide people interested in the use of membranes in CO2 capture a general overview of the actual situation both in terms of materials studies and global strategy to follow in the choice of the membrane gas separation with respect to the other separation technologies. Firstly, an overview on the polymeric membranes currently studied for their use in CO2 capture and of their transport properties is proposed. Up to now, the most promising materials developed at laboratory scale show a selectivity of 100–160. Then, some important design parameters have been introduced in order to evaluate the advantages potentially offered by membrane systems with respect to the other separation technologies (adsorption and cryogenic). These parameters, based on specific considerations related to the output to be obtained as the product purity and the final destination of the product and to the feed conditions, might constitute guidelines for the choice of the separation technology.Considering as case study a flue gas stream containing 13% of CO2, some general maps of CO2 recovery versus permeate purity have been introduced. This might constitute a simple tool useful for an immediate and preliminary analysis on the membrane technology suitability for CO2 separation from flue gas, also on the light of specific considerations, strictly related to the output to be obtained.

[1]  A. Soffer,et al.  The Carbon Molecular Sieve Membranes. General Properties and the Permeability of CH4/H2 Mixture , 1987 .

[2]  H. Nakata,et al.  Carbon molecular sieve films from polyimide , 1992 .

[3]  Dc Kitty Nijmeijer,et al.  Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074 , 2009 .

[4]  Y. Lee,et al.  Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes , 2001 .

[5]  May-Britt Hägg,et al.  Optimization of a membrane process for CO2 capture in the steelmaking industry , 2007 .

[6]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[7]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[8]  Judith C. Chow,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations , 2003, Journal of the Air & Waste Management Association.

[9]  C. A. Roberts,et al.  A Study of Very Large Scale Post Combustion CO2 Capture at A refining & Petrochemical Complex , 2003 .

[10]  Changhai Liang,et al.  Carbon membrane for gas separation derived from coal tar pitch , 1999 .

[11]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[12]  H. Herzog Peer Reviewed: What Future for Carbon Capture and Sequestration? , 2001 .

[13]  K. Haraya,et al.  Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films , 1999 .

[14]  T. Teramae,et al.  Gas permeability and permselectivity of plasma‐treated polypropylene membranes , 2006 .

[15]  C. M. White,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers , 2003, Journal of the Air & Waste Management Association.

[16]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[17]  May-Britt Hägg,et al.  Carbon membranes from cellulose and metal loaded cellulose , 2005 .

[18]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[19]  Suzanne Shelley,et al.  Capturing CO2 : Membrane Systems Move Forward , 2009 .

[20]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[21]  Mj Martin Tuinier,et al.  Cryogenic CO2 capture using dynamically operated packed beds , 2010 .

[22]  Koichi Yamada,et al.  Development of PAMAM dendrimer composite membranes for CO2 separation , 2006 .

[23]  Clem E. Powell,et al.  Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases , 2006 .

[24]  C. Cornelius,et al.  The gas separation effects of annealing polyimide–organosilicate hybrid membranes , 2003 .

[25]  Amornvadee Veawab,et al.  Corrosion Behavior of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions , 1999 .

[26]  May-Britt Hägg,et al.  Novel fixed-site–carrier polyvinylamine membrane for carbon dioxide capture , 2004 .

[27]  Y. Lee,et al.  Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone , 2005 .

[28]  José Sánchez,et al.  Sol-gel polyimide-silica composite membrane : gas transport properties , 1997 .

[29]  H. Suda,et al.  Gas Permeation through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide , 1997 .

[30]  L. Robeson,et al.  The upper bound revisited , 2008 .

[31]  Tomoyuki Suzuki,et al.  Physical and Gas Transport Properties of Novel Hyperbranched Polyimide – Silica Hybrid Membranes , 2005 .

[32]  William J. Koros,et al.  Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation , 2007 .

[33]  W. Koros,et al.  Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors , 1994 .

[34]  A. Singh-Ghosal Air separation properties of flat sheet homogeneous pyrolytic carbon membranes , 2000 .

[35]  J. Hayashi,et al.  Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon , 1997 .

[36]  E. Drioli,et al.  Preparation of asymmetric PEEKWC flat membranes with different microstructures by wet phase inversion , 2004 .

[37]  Roda Bounaceur,et al.  Membrane processes for post-combustion carbon dioxide capture: A parametric study , 2006 .

[38]  William J. Koros,et al.  Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide–imide polymer, for high-pressure CO2 separations , 2008 .

[39]  James T. Murphy,et al.  Capturing Carbon from Existing Coal-Fired Power Plants , 2009 .

[40]  Roberto Carapellucci,et al.  Membrane systems for CO2 capture and their integration with gas turbine plants , 2003 .

[41]  P. Tin,et al.  Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers , 2004 .

[42]  R. W. Spillman,et al.  Economic considerations in membrane gas separation process design , 1987 .

[43]  Tai‐Shung Chung,et al.  Polyimide‐Carbonized Membranes for Gas Separation: Structural, Composition, and Morphological Control of Precursors , 2006 .

[44]  K. Haraya,et al.  Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation , 1997 .

[45]  K. Sirkar,et al.  Dendrimer Liquid Membranes: CO2 Separation from Gas Mixtures , 2001 .

[46]  Y. Lee,et al.  Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties , 2005 .

[47]  Q. Hu,et al.  Poly(amide-imide)/TiO2 nano-composite gas separation membranes : Fabrication and characterization , 1997 .

[48]  K. Sirkar,et al.  Dendrimer Membranes: A CO 2 -Selective Molecular Gate , 2000 .

[49]  S. A. Stern,et al.  Polymers for gas separations: the next decade , 1994 .

[50]  Enrico Drioli,et al.  Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth , 2001 .

[51]  Benny D. Freeman,et al.  Materials science of membranes for gas and vapor separation , 2006 .

[52]  Enrico Drioli,et al.  Experimental analysis and simulation of the gas transport in dense Hyflon® AD60X membranes: Influence of residual solvent , 2007 .

[53]  M. Inagaki,et al.  Carbonization and graphitization of BPDA/PDA polyimide films: effect of structure of polyimide precursor , 1999 .

[54]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[55]  Eric Favre,et al.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? , 2007 .

[56]  Suk-In Hong,et al.  Gas Permeation Properties of Organic-Inorganic Hybrid Membranes Prepared from Hydroxyl-Terminated Polyether and 3-isocyanatopropyltriethoxysilane , 2005 .

[57]  A. Ismail,et al.  Fabrication of carbon membranes for gas separation--a review , 2004 .

[58]  Anders Lyngfelt,et al.  Novel capture processes , 2005 .