Hydrographic control on carbon isotope fractionation in coccolithophores in the North Atlantic during the Mid-Pleistocene

[1]  N. Vollmar,et al.  Coccolithophore response to changes in surface water conditions south of Iceland (ODP Site 984) between 130 and 56 ka , 2022, Marine Micropaleontology.

[2]  L. Beaufort,et al.  Controls on Alkenone Carbon Isotope Fractionation in the Modern Ocean , 2021, Geochemistry, Geophysics, Geosystems.

[3]  H. Stoll,et al.  Carbon Isotopic Fractionation of Alkenones and Gephyrocapsa Coccoliths Over the Late Quaternary (Marine Isotope Stages 12–9) Glacial‐Interglacial Cycles at the Western Tropical Atlantic , 2021, Paleoceanography and Paleoclimatology.

[4]  S. Dyhrman,et al.  Carbon Isotope Fractionation in Noelaerhabdaceae Algae in Culture and a Critical Evaluation of the Alkenone Paleobarometer , 2021, Geochemistry, Geophysics, Geosystems.

[5]  S. Barker,et al.  Strengthening Atlantic Inflow Across the Mid‐Pleistocene Transition , 2021, Paleoceanography and Paleoclimatology.

[6]  G. Foster,et al.  Atmospheric CO2 over the Past 66 Million Years from Marine Archives , 2021 .

[7]  M. Badger Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1 , 2021 .

[8]  D. Prothero Neogene , 2021, Encyclopedia of Geology.

[9]  T. Tanner,et al.  Decreasing Atmospheric CO2 During the Late Miocene Cooling , 2020, Paleoceanography and Paleoclimatology.

[10]  K. Krumhardt,et al.  Estimation of Physiological Factors Controlling Carbon Isotope Fractionation in Coccolithophores in Photic Zone and Core‐Top Samples , 2020, Geochemistry, Geophysics, Geosystems.

[11]  J. Henderiks,et al.  Refining the alkenone-pCO2 method II: Towards resolving the physiological parameter ‘b’ , 2020 .

[12]  T. Eglinton,et al.  The impact of abrupt deglacial climate variability on productivity and upwelling on the southwestern Iberian margin , 2020, Quaternary Science Reviews.

[13]  A. Pearson,et al.  A general model for carbon isotopes in red-lineage phytoplankton: Interplay between unidirectional processes and fractionation by RubisCO , 2019, Geochimica et Cosmochimica Acta.

[14]  M. Kučera,et al.  Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data , 2019, Climate of the Past.

[15]  M. Pagani,et al.  Refining the alkenone-pCO2 method I: Lessons from the Quaternary glacial cycles , 2019, Geochimica et Cosmochimica Acta.

[16]  P. Ziveri,et al.  Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy , 2019, Quaternary Science Reviews.

[17]  H. Stoll,et al.  A dataset of modern and fossil distribution of coccolithophore species Florisphaera profunda in the world׳s ocean , 2019, Data in brief.

[18]  F. Abrantes,et al.  Change in the North Atlantic circulation associated with the mid-Pleistocene transition , 2018, Climate of the Past.

[19]  P. Bown,et al.  Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels , 2018, Climate of the Past.

[20]  M. Kučera,et al.  Insolation forcing of coccolithophore productivity in the North Atlantic during the Middle Pleistocene , 2018, Quaternary Science Reviews.

[21]  K. Rehfeld,et al.  Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene , 2018, Nature.

[22]  K. Krumhardt,et al.  Coccolithophore growth and calcification in a changing ocean , 2017 .

[23]  A. Voelker,et al.  A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin , 2017 .

[24]  M. Kučera,et al.  ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples , 2017, Scientific Data.

[25]  J. Schmitt,et al.  A 156 kyr smoothed history of the atmospheric greenhouse gases CO 2 , CH 4 , and N 2 O and their radiative forcing , 2017 .

[26]  M. Pagani,et al.  A long history of equatorial deep-water upwelling in the Pacific Ocean , 2017 .

[27]  Lorraine E. Lisiecki,et al.  Regional and global benthic δ18O stacks for the last glacial cycle , 2016 .

[28]  Sylvain Watelet,et al.  A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2 , 2016 .

[29]  V. Brovkin,et al.  Interglacials of the last 800,000 years , 2016 .

[30]  John Marshall,et al.  Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review , 2016 .

[31]  U. Riebesell,et al.  The modulating effect of light intensity on the response of the coccolithophore Gephyrocapsa oceanica to ocean acidification , 2015 .

[32]  G. Acton,et al.  A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin , 2015 .

[33]  J. Orr,et al.  Improved routines to model the ocean carbonate system: mocsy 2.0 , 2015 .

[34]  Thomas H. G. Ezard,et al.  Environmental and biological controls on size-specific δ13C and δ18O in recent planktonic foraminifera , 2015 .

[35]  C. Barbante,et al.  The Marine Isotope Stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability , 2015 .

[36]  J. Flores,et al.  The use of circularly polarized light for biometry, identification and estimation of mass of coccoliths , 2014 .

[37]  I. Cacho,et al.  Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31–19) , 2014 .

[38]  U. Riebesell,et al.  Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2 , 2014, PloS one.

[39]  M. Pagani 12.13 – Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy , 2014 .

[40]  G. Filippelli,et al.  A high resolution opal and radiolarian record from the subpolar North Atlantic during the Mid-Pleistocene Transition (1069─779ka): Palaeoceanographic implications , 2013 .

[41]  R. DeConto,et al.  A 40-million-year history of atmospheric CO2 , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Marius N. Müller,et al.  Influence of temperature and CO 2 on the strontium and magnesium composition of coccolithophore calcite , 2013 .

[43]  R. Stein,et al.  Warming of surface waters in the mid‐latitude North Atlantic during Heinrich events , 2013 .

[44]  Rainer Zahn,et al.  Seasonal patterns of shell flux, δ18O and δ13C of small and large N. pachyderma (s) and G. bulloides in the subpolar North Atlantic , 2013 .

[45]  G. Filippelli,et al.  Palaeoceanographic changes in the North Atlantic during the Mid‐Pleistocene Transition (MIS 31–19) as inferred from planktonic foraminiferal and calcium carbonate records , 2013 .

[46]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 4, Dissolved inorganic nutrients (phosphate, nitrate, silicate) , 2013 .

[47]  F. Sierro,et al.  Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid‐Pleistocene Transition , 2012 .

[48]  J. Shutler,et al.  Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO 2 from 10 years of satellite Earth observation data , 2012 .

[49]  R. DeConto,et al.  The Role of Carbon Dioxide During the Onset of Antarctic Glaciation , 2011, Science.

[50]  F. Sierro,et al.  Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene (800–400ka) and their implications for ocean circulation , 2011 .

[51]  M. Kučera,et al.  Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800–400ka) , 2011 .

[52]  G. Haug,et al.  Sea surface temperatures did not control the first occurrence of Hudson Strait Heinrich Events during MIS 16 , 2011 .

[53]  S. Bernasconi,et al.  Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 µg) with a GasBench II preparation device. , 2011, Rapid communications in mass spectrometry : RCM.

[54]  H. Wickham ggplot2 , 2011 .

[55]  J. Grützner,et al.  Threshold behavior of millennial scale variability in deep water hydrography inferred from a 1.1 Ma long record of sediment provenance at the southern Gardar Drift , 2010 .

[56]  K. Lawrence,et al.  North Atlantic climate evolution through the Plio-Pleistocene climate transitions , 2010 .

[57]  A. Voelker,et al.  Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation , 2010 .

[58]  I. Cacho,et al.  North Atlantic millennial-scale climate variability, 910 to 790 ka , 2010 .

[59]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[60]  A. Voelker,et al.  Temperature and productivity changes off the western Iberian margin during the last 150 ky , 2010 .

[61]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[62]  D. Hutchins,et al.  Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response , 2009 .

[63]  J. Sarmiento,et al.  Decadal variability in North Atlantic phytoplankton blooms , 2009 .

[64]  Fei-xue Fu,et al.  Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae) , 2008 .

[65]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[66]  S. Trimborn,et al.  Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi , 2007 .

[67]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[68]  P. Ziveri,et al.  Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean , 2007 .

[69]  W. Balch,et al.  Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export , 2007 .

[70]  Ian S. Robinson,et al.  Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic , 2006 .

[71]  P. C. Reid,et al.  Coccolithophore bloom size variation in response to the regional environment of the subarctic North Atlantic , 2006 .

[72]  W. McGillis,et al.  Aqueous CO2 gradients for air–sea flux estimates , 2006 .

[73]  M. Weinelt,et al.  Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO) , 2005 .

[74]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[75]  M. Raymo,et al.  Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene , 2004 .

[76]  U. Riebesell,et al.  Coccolithophores and the biological pump: responses to environmental changes , 2004 .

[77]  M. Sarnthein,et al.  Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas , 2003 .

[78]  P. Falkowski,et al.  Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids , 2002 .

[79]  R. Schneider,et al.  Carbon isotopic composition of the C37:2 alkenone in core top sediments of the South Atlantic Ocean: Effects of CO2and nutrient concentrations , 2002 .

[80]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[81]  B. Flower,et al.  Surface and deep ocean circulation in the subpolar North Atlantic during the mid-Pleistocene revolution , 2001 .

[82]  Stephanie Dutkiewicz,et al.  Meteorological modulation of the North Atlantic spring bloom , 2001 .

[83]  H. Kinkel,et al.  Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability , 2000 .

[84]  G. Ganssen,et al.  The isotopic signature of planktonic foraminifera from NE Atlantic surface sediments: implications for the reconstruction of past oceanic conditions , 2000, Journal of the Geological Society.

[85]  Michael A. Arthur,et al.  Miocene evolution of atmospheric carbon dioxide , 1999 .

[86]  Joseph D. Ortiz,et al.  Diffuse spectral reflectance as a proxy for percent carbonate content in North Atlantic sediments , 1999 .

[87]  J. L. Cullen,et al.  A 0.5-million-year record of millennial-scale climate variability in the north atlantic , 1999, Science.

[88]  D. Hodell,et al.  A 1.0 Myr Record of Glacial North Atlantic Intermediate Water Variability from ODP Site 982 in the Northeast Atlantic , 1999 .

[89]  A. Rosell‐Melé,et al.  Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .

[90]  K. L. Hanson,et al.  Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation , 1998 .

[91]  J. Flores,et al.  Revised technique for calculation of calcareous nannofossil accumulation rates , 1997 .

[92]  K. L. Hanson,et al.  Consistent fractionation of 13C in nature and in the laboratory: Growth‐rate effects in some haptophyte algae , 1997, Global biogeochemical cycles.

[93]  K. Kohfeld,et al.  Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments , 1996 .

[94]  Pascal Yiou,et al.  Macintosh Program performs time‐series analysis , 1996 .

[95]  D. Wolf-Gladrow,et al.  A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake , 1996 .

[96]  D. Nürnberg MAGNESIUM IN TESTS OF NEOGLOBOQUADRINA PACHYDERMA SINISTRAL FROM HIGH NORTHERN AND SOUTHERN LATITUDES , 1995 .

[97]  J. Hayes,et al.  Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. , 1994, Paleoceanography.

[98]  R. Henrich,et al.  Evolution of the Norwegian Current and the Scandinavian Ice Sheets during the past 2.6 m.y.: evidence from ODP Leg 104 biogenic carbonate and terrigenous records , 1994 .

[99]  G. Rau Variations in Sedimentary Organic δ13C as a Proxy for Past Changes in Ocean and Atmospheric CO2 Concentrations , 1994 .

[100]  E. Jansen,et al.  The Relationship between Surface Water Masses, Oceanographic Fronts and Paleoclimatic Proxies in Surface Sediments of the Greenland, Iceland, Norwegian Seas , 1994 .

[101]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[102]  K. Lackschewitz,et al.  Late Quaternary calcium carbonate sedimentation and terrigenous input along the east Greenland continental margin , 1993 .

[103]  W. Schmitz,et al.  On the North Atlantic Circulation , 1993 .

[104]  C. Romanek,et al.  Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .

[105]  Trevor Platt,et al.  Biological control of surface temperature in the Arabian Sea , 1991, Nature.

[106]  Jan Backman,et al.  Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean , 1989 .

[107]  M. Sarnthein,et al.  Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina Peregrina group and Cibicidoides Wuellerstorfi , 1986 .

[108]  R. Brereton,et al.  Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data , 1986 .

[109]  W. Balsam Carbonate Dissolution on the Muir Seamount (Western North Atlantic): Interglacial/Glacial Changes , 1983 .

[110]  T. Crowley Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years☆ , 1983 .

[111]  J. Swift,et al.  Seasonal transitions and water mass formation in the Iceland and Greenland seas , 1981 .