Advances in the synthesis of InAs and GaAs nanowires for electronic applications

Summary New materials and device concepts are in great demand for continual (opto)electronic device scaling and performance enhancement. Arsenide III-V semiconductor nanowires promise novel device architectures and superior (opto)electronic properties. Recent insights into the growth and optimal control over the InAs and GaAs nanowire morphology and distinguished key physical aspects in their growth are discussed. Direct correlation of individual nanowire crystal structure with their electronic transport properties is also presented.

[1]  M. Koguchi,et al.  Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type , 1992 .

[2]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[3]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[4]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[5]  I. Avramov Kinetics of growth of nanowhiskers (nanowires and nanotubes) , 2007, Nanoscale research letters.

[6]  C. Cao,et al.  Effect of size in nanowires grown by the vapor-liquid-solid mechanism , 2006 .

[7]  Kiyoshi Takahashi,et al.  Growth of InAs Whiskers in Wurtzite Structure , 1966 .

[8]  E. Yu,et al.  Optimal Control over the InAs Nanowire Growth for System Integration and their Structural and Transport Properties , 2008, 2008 8th IEEE Conference on Nanotechnology.

[9]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Charles M. Lieber,et al.  Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires , 2002 .

[12]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[13]  Bas Ketelaars,et al.  Synergetic nanowire growth. , 2007, Nature nanotechnology.

[14]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[15]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[16]  N. V. Sibirev,et al.  The role of surface diffusion of adatoms in the formation of nanowire crystals , 2006 .

[17]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[18]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[19]  Hadis Morkoç,et al.  Nitride Semiconductors and Devices , 1999 .

[20]  E. Yu,et al.  Surface diffusion and substrate-nanowire adatom exchange in InAs nanowire growth. , 2009, Nano letters.

[21]  T. Ito,et al.  An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .

[22]  W. Prost,et al.  High Transconductance MISFET With a Single InAs Nanowire Channel , 2007, IEEE Electron Device Letters.

[23]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[24]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[25]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[26]  J. Hirth,et al.  Kinetics of Diffusion-Controlled Whisker Growth , 1964 .

[27]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[28]  K. Dick,et al.  A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires , 2005 .

[29]  E. Yu,et al.  Growth of InAs Nanowires on SiO2 Substrates: Nucleation, Evolution, and the Role of Au Nanoparticles , 2007 .

[30]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[31]  Charles M. Lieber,et al.  Diameter-Selective Synthesis of Semiconductor Nanowires , 2000 .

[32]  Anna Maria Mancini,et al.  Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine , 2006 .

[33]  Darija Susac,et al.  Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition. , 2008, Nano letters.

[34]  Patrick D. Carpenter,et al.  Role of molecular surface passivation in electrical transport properties of InAs nanowires. , 2008, Nano letters (Print).

[35]  Yi Cui,et al.  Formation of chiral branched nanowires by the Eshelby Twist. , 2008, Nature nanotechnology.

[36]  Cesare Soci,et al.  A systematic study on the growth of gaas nanowires by metal-organic chemical vapor deposition. , 2008, Nano letters.

[37]  Walter Riess,et al.  Realization of a silicon nanowire vertical surround-gate field-effect transistor. , 2006, Small.

[38]  Andrew G. Glen,et al.  APPL , 2001 .

[39]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[40]  E. Yu,et al.  Transport coefficients of InAs nanowires as a function of diameter. , 2009, Small.

[41]  Growth of epitaxial InAs nanowires in a simple closed system , 2005 .

[42]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[43]  Brian A. Korgel,et al.  Space charge limited currents and trap concentrations in GaAs nanowires , 2006 .

[44]  E. Yu,et al.  Excess indium and substrate effects on the growth of InAs nanowires. , 2007, Small.

[45]  S. Ghandhi,et al.  Deposition of GaAs Epitaxial Layers by Organometallic CVD Temperature and Orientation Dependence , 1983 .

[46]  G. Wagner,et al.  MOVPE growth and real structure of vertical-aligned GaAs nanowires , 2007 .

[47]  M. Lazzarino,et al.  Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires , 2007 .

[48]  T. Katsuyama,et al.  Nanometre-sized GaAs wires grown by organo-metallic vapour-phase epitaxy , 2006 .

[49]  V. Grillo,et al.  Vapor–Solid–Solid Growth Mechanism Driven by Epitaxial Match between Solid AuZn Alloy Catalyst Particles and ZnO Nanowires at Low Temperatures , 2008 .

[50]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[51]  E. I. Givargizov Oriented growth of whiskers of AIIIBV compounds by VLS-mechanism , 1975 .

[52]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[53]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[54]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[55]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.

[56]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[57]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[58]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[59]  Paul K. L. Yu,et al.  Influence of surface states on the extraction of transport parameters from InAs nanowire field effect transistors , 2007 .

[60]  Jianwei Sun,et al.  Solution-liquid-solid growth of semiconductor nanowires. , 2006, Inorganic chemistry.

[61]  G. B. Stringfellow,et al.  Kinetics of the reaction between trimethylgallium and arsine , 1990 .

[62]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[63]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[64]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[65]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[66]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[67]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[68]  H. Gassen,et al.  A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane , 1971 .

[69]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[70]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[71]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[72]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[73]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[74]  L. Samuelson,et al.  Tunable effective g factor in InAs nanowire quantum dots , 2005 .

[75]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[76]  G. Patriarche,et al.  Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth , 2005 .

[77]  Shadi A Dayeh,et al.  High electron mobility InAs nanowire field-effect transistors. , 2007, Small.

[78]  E. Yu,et al.  Integration of vertical InAs nanowire arrays on insulator-on-silicon for electrical isolation , 2008 .

[79]  E. Yu,et al.  Field dependent transport properties in InAs nanowire field effect transistors. , 2008, Nano letters (Print).

[80]  Paul K. L. Yu,et al.  Transport properties of InAs nanowire field effect transistors: The effects of surface states , 2007 .

[81]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[82]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[83]  Shui-Tong Lee,et al.  Oxide-assisted growth and optical characterization of gallium-arsenide nanowires , 2001 .

[84]  I. Lindau,et al.  Unified defect model and beyond , 1980 .

[85]  E. I. Givargizov Highly Anisotropic Crystals , 1986 .

[86]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[87]  E. Yu,et al.  Direct observation of ballistic and drift carrier transport regimes in InAs nanowires , 2006 .

[88]  L. Samuelson,et al.  Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy , 2007 .

[89]  Scanned electrical probe characterization of carrier transport behavior in InAs nanowires , 2006 .