Enhanced Thermoelectric Performance by Resonant Doping and Embedded Magnetic Impurity

[1]  A. Riss,et al.  High solubility of Al and enhanced thermoelectric performance due to resonant states in Fe2VAlx , 2022, Applied Physics Letters.

[2]  P. Scardi,et al.  Effects of Grain Size on the Thermoelectric Properties of Cu2SnS3: An Experimental and First-Principles Study , 2021 .

[3]  Xiaoyuan Zhou,et al.  Phase Composition Manipulation and Twin Boundary Engineering Lead to Enhanced Thermoelectric Performance of Cu2SnS3 , 2021, ACS Applied Energy Materials.

[4]  T. You,et al.  p-Type Double Doping and the Diamond-like Morphology Shift of the Zintl Phase Thermoelectric Materials: The Ca11-xAxSb10-yGez (A = Na, Li; 0.06(3) ≤ x ≤ 0.17(5), 0.19(1) ≤ y ≤ 0.55(1), 0.13(1) ≤ z ≤ 0.22(1)) System. , 2021, Inorganic Chemistry.

[5]  Jinfeng Dong,et al.  Weak-ferromagnetism for room temperature thermoelectric performance enhancement in p-type (Bi,Sb)2Te3 , 2021, Materials Today Physics.

[6]  Yifeng Wang,et al.  Thermoelectric properties and magnetoelectric coupling in dually doped Cu2Sn1−2xZnxFexS3 , 2020, Journal of Materials Science: Materials in Electronics.

[7]  Jiong Yang,et al.  Precise Regulation of Carrier Concentration in Thermoelectric BiSbTe Alloy via Magnetic Doping. , 2020, ACS applied materials & interfaces.

[8]  J. Mejía‐López,et al.  (Cu)tet(Cr2-xSnx)octS4-ySey Spinels: Crystal Structure, Density Functional Theory Calculations, and Magnetic Behavior. , 2019, Inorganic chemistry.

[9]  D. Vashaee,et al.  Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe , 2019, Science Advances.

[10]  Lidong Chen,et al.  Thermoelectric properties of non-stoichiometric Cu2+xSn1−xS3 compounds , 2019, Journal of Applied Physics.

[11]  N. Kobayashi,et al.  Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite , 2019, Materials Today Physics.

[12]  G. J. Snyder,et al.  Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency , 2019, Advanced materials.

[13]  Xiaohui Hu,et al.  Role of crystal transformation on the enhanced thermoelectric performance in Mn-doped Cu2SnS3 , 2019, Journal of Alloys and Compounds.

[14]  Xiaohui Hu,et al.  Magnetic iron doping in Cu2SnS3 ceramics for enhanced thermoelectric transport properties , 2019, Journal of Applied Physics.

[15]  A. Rockett,et al.  Identifying Short-Range Disorder in Crystalline Bulk Cu2SnS3 Phases: A Solid-State Nuclear Magnetic Resonance Spectroscopic Investigation , 2018, Chemistry of Materials.

[16]  S. Maenosono,et al.  Enhancement of the Thermoelectric Figure of Merit in Blended Cu2Sn1–xZnxS3 Nanobulk Materials , 2018, ACS Applied Nano Materials.

[17]  L. Beneš,et al.  Thermoelectric and magnetic properties of Cr-doped single crystal Bi 2 Se 3 – Search for energy filtering , 2018 .

[18]  Xiaohui Hu,et al.  Synergistic role of Ni-doping in electrical and phonon transport properties of Cu2Sn1-xNixS3 , 2017 .

[19]  Xianli Su,et al.  Superparamagnetic enhancement of thermoelectric performance , 2017, Nature.

[20]  Sarah J. Watzman,et al.  Thermal spin transport and energy conversion , 2017 .

[21]  T. You,et al.  Influence of Thermally Activated Solid-State Crystal-to-Crystal Structural Transformation on the Thermoelectric Properties of the Ca5–xYbxAl2Sb6 (1.0 ≤ x ≤ 5.0) System , 2017 .

[22]  Xianli Su,et al.  Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. , 2017, Nature nanotechnology.

[23]  C. Li,et al.  Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties , 2016, Scientific Reports.

[24]  Woochul Kim,et al.  Band Degeneracy, Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys , 2016 .

[25]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[26]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[27]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[28]  B. Liao,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[29]  Jeremy Jones,et al.  Superparamagnetism , 2013, Radiopaedia.org.

[30]  Joseph P. Heremans,et al.  Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys , 2011 .

[31]  T. Ishikawa,et al.  Spin-glass and novel magnetic behavior in the spinel-type Cu1‐xAgxCrSnS4Cu1‐xAgxCrSnS4 , 2010 .

[32]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[33]  K. Yosida Theory of magnetism , 1996 .

[34]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .

[35]  D. Spitzer Lattice thermal conductivity of semiconductors: A chemical bond approach , 1969 .

[36]  G. Eulenberger,et al.  Über einige quaternäre Chalkogenide mit Spinellstruktur , 1968 .