Turning Recycled Cardboard Container-Derived Lignin-Containing Cellulose Nanofibrils into a Robust Gas Barrier UV-Shielding Film

[1]  D. Bousfield,et al.  Recyclable grease-proof cellulose nanocomposites with enhanced water resistance for food serving applications , 2022, Cellulose.

[2]  H. Jameel,et al.  Upcycling strategies for old corrugated containerboard to attain high-performance tissue paper: A viable answer to the packaging waste generation dilemma , 2021 .

[3]  D. Gardner,et al.  Optimizing lignocellulosic nanofibril dimensions and morphology by mechanical refining for enhanced adhesion. , 2021, Carbohydrate polymers.

[4]  I. Furó,et al.  Cellulose and the role of hydrogen bonds: not in charge of everything , 2021, Cellulose.

[5]  Jinwu Wang,et al.  Tuning physical, mechanical and barrier properties of cellulose nanofibril films through film drying techniques coupled with thermal compression , 2021, Cellulose.

[6]  Yunqiao Pu,et al.  Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in Poly(l-lactide) Nanocomposites , 2021, ACS Sustainable Chemistry & Engineering.

[7]  J. Youngblood,et al.  Controlled Dispersion and Setting of Cellulose Nanofibril - Carboxymethyl Cellulose Pastes , 2021, Cellulose.

[8]  D. Bousfield,et al.  Processing Effects on Structure, Strength, and Barrier Properties of Refiner-Produced Cellulose Nanofibril Layers , 2021, ACS Applied Polymer Materials.

[9]  G. Huber,et al.  Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation , 2020, Science Advances.

[10]  D. Bousfield,et al.  Enhancing the Oxygen Barrier Properties of Nanocellulose at High Humidity: Numerical and Experimental Assessment , 2020, Sustainable Chemistry.

[11]  D. Bousfield,et al.  Cellulose and lignocellulose nanofibril suspensions and films: A comparison. , 2020, Carbohydrate polymers.

[12]  Michael D. Mason,et al.  A comparative study of methods for porosity determination of cellulose based porous materials , 2020, Cellulose.

[13]  J. Sirviö,et al.  Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties , 2020, Journal of Materials Chemistry A.

[14]  S. Mhaske,et al.  Old corrugated box (OCB)-based cellulose nanofiber-reinforced and citric acid-cross-linked TSP–guar gum composite film , 2020, Polymer Bulletin.

[15]  R. Tuinier,et al.  Polymer-mediated colloidal stability: on the transition between adsorption and depletion. , 2019, Advances in colloid and interface science.

[16]  Panpan Li,et al.  Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment , 2019, Chemical Engineering Journal.

[17]  Lydia N. Skolrood,et al.  Strong and Tough Cellulose Nanofibrils Composite Films: Mechanism of Synergetic Effect of Hydrogen Bonds and Ionic Interactions , 2019, ACS Sustainable Chemistry & Engineering.

[18]  Amir Khosravani,et al.  Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch–nanosilica combination to make paperboard , 2019, Cellulose.

[19]  D. O′Hare,et al.  High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film , 2019, Nature Communications.

[20]  Ana Balea,et al.  In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production , 2019, Molecules.

[21]  M. Tajvidi,et al.  Sustainable Barrier System via Self-Assembly of Colloidal Montmorillonite and Cross-linking Resins on Nanocellulose Interfaces. , 2018, ACS applied materials & interfaces.

[22]  M. Österberg,et al.  Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles. , 2018, Biomacromolecules.

[23]  Yixuan Song,et al.  Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films , 2018, Advanced Materials Interfaces.

[24]  A. Ragauskas,et al.  Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment , 2018, Cellulose.

[25]  T. Mang,et al.  Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function , 2018, Advanced materials.

[26]  D. Bousfield,et al.  Moisture and Oxygen Barrier Properties of Cellulose Nanomaterial-Based Films , 2018 .

[27]  J. Y. Zhu,et al.  Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. , 2017, Carbohydrate polymers.

[28]  Jie Chen,et al.  Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties. , 2017, ACS applied materials & interfaces.

[29]  Yulin Deng,et al.  Dual Mechanism of Dry Strength Improvement of Cellulose Nanofibril Films by Polyamide-epichlorohydrin Resin Cross-Linking , 2016 .

[30]  F. Pignon,et al.  Current Progress in Rheology of Cellulose Nanofibril Suspensions. , 2016, Biomacromolecules.

[31]  A. Isogai,et al.  Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions , 2016 .

[32]  Shaoliang Xiao,et al.  Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication. , 2016, Carbohydrate polymers.

[33]  B. Ju,et al.  Highly oriented gold/nanoclay-polymer nanocomposites for flexible gas barrier films. , 2015, ACS applied materials & interfaces.

[34]  J. Bras,et al.  Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks , 2014 .

[35]  P. Kelly,et al.  Aluminum oxide barrier coatings on polymer films for food packaging applications , 2014 .

[36]  Amy Tran,et al.  Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. , 2013, ACS applied materials & interfaces.

[37]  Janne Laine,et al.  A Fast Method to Produce Strong NFC Filmas as a Platform for Barrier and Functional Materials , 2016 .

[38]  A. Ashori,et al.  Utilization of sugarcane molasses as a dry-strength additive for old corrugated container recycled paper , 2013 .

[39]  Juha Salmela,et al.  Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour , 2012, Cellulose.

[40]  J. Grunlan,et al.  Influence of clay concentration on the gas barrier of clay-polymer nanobrick wall thin film assemblies. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[41]  Yong Tae Park,et al.  Super Gas Barrier of All-Polymer Multilayer Thin Films , 2011 .

[42]  J. Grunlan,et al.  Super gas barrier of transparent polymer-clay multilayer ultrathin films. , 2010, Nano letters.

[43]  C. Macosko,et al.  Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity , 2010 .

[44]  J. Grunlan,et al.  Transparent Clay−Polymer Nano Brick Wall Assemblies with Tailorable Oxygen Barrier , 2010 .

[45]  Mikael Gällstedt,et al.  Oxygen and oil barrier properties of microfibrillated cellulose films and coatings , 2010 .

[46]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[47]  Mohini Sain,et al.  Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. , 2008, Bioresource technology.

[48]  A. Isogai,et al.  The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin , 2007 .

[49]  Rafael Gavara,et al.  Structural characteristics defining high barrier properties in polymeric materials , 2004 .