Single-Flow Multiphase Flow Batteries: Experiments

[1]  P. Fischer,et al.  Improvement of safe bromine electrolytes and their cell performance in H2/Br2 flow batteries caused by tuning the bromine complexation equilibrium , 2022, Journal of Power Sources.

[2]  M. Bazant,et al.  Single Flow Multiphase Flow Batteries: Theory , 2021 .

[3]  P. Fischer,et al.  Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents , 2021, Journal of Power Sources.

[4]  P. Fischer,et al.  Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries , 2021, Molecules.

[5]  Yi-Chun Lu,et al.  Assessment methods and performance metrics for redox flow batteries , 2021, Nature Energy.

[6]  C. Flox,et al.  Redox flow batteries: Status and perspective towards sustainable stationary energy storage , 2021, Journal of Power Sources.

[7]  M. Suss,et al.  A single-flow battery with multiphase flow. , 2020, ChemSusChem.

[8]  K. Müller,et al.  Assessment of the reliability of vanadium‐redox flow batteries , 2020, Engineering Reports.

[9]  Xijing Liang,et al.  A High-Performance Aqueous Zinc-Bromine Static Battery , 2020, iScience.

[10]  P. Lund,et al.  Review of zinc dendrite formation in zinc bromine redox flow battery , 2020 .

[11]  L. Crema,et al.  Equilibrium Properties of a Bromine-Bromide Electrolyte for Flow Batteries , 2020, Journal of The Electrochemical Society.

[12]  Linda F. Nazar,et al.  Energy storage emerging: A perspective from the Joint Center for Energy Storage Research , 2020, Proceedings of the National Academy of Sciences.

[13]  Erik Ela,et al.  Motivations and options for deploying hybrid generator-plus-battery projects within the bulk power system , 2020, The Electricity Journal.

[14]  Yunhui Huang,et al.  A Stirred Self-Stratified Battery for Large-Scale Energy Storage , 2020 .

[15]  R. Marcilla,et al.  Critical aspects of membrane-free aqueous battery based on two immiscible neutral electrolytes , 2020 .

[16]  P. Lund,et al.  Modeling of Zinc Bromine redox flow battery with application to channel design , 2020 .

[17]  Kyle C. Smith,et al.  Robust Simulation of Coupled Reactions and Transport in Redox Flow Batteries Using Tailored Numerical Schemes , 2020 .

[18]  Hongli Zhu,et al.  Recent advances in the selective membrane for aqueous redox flow batteries , 2019, Materials Today Nano.

[19]  Z. Fu,et al.  Efficient Nitrogen-Doped Carbon for Zinc-Bromine Flow Battery. , 2019, Small.

[20]  R. Marcilla,et al.  Pioneering Use of Ionic Liquid‐Based Aqueous Biphasic Systems as Membrane‐Free Batteries , 2018, Advanced science.

[21]  Mohd Rusllim Mohamed,et al.  Review of zinc-based hybrid flow batteries: From fundamentals to applications , 2018, Materials Today Energy.

[22]  A. Wark,et al.  Novel complexing additives to reduce the immiscible phase formed in the hybrid ZnBr2 flow battery , 2017 .

[23]  R. Marcilla,et al.  A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes , 2017, Angewandte Chemie.

[24]  Jinho Chang,et al.  Understanding Br− transfer into electrochemically generated discrete quaternary ammonium polybromide droplet on Pt ultramicroelectrode , 2017 .

[25]  M. Aziz,et al.  Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery , 2017 .

[26]  Daniel A. Steingart,et al.  Minimal architecture zinc–bromine battery for low cost electrochemical energy storage , 2017 .

[27]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[28]  Jens Noack,et al.  The Chemistry of Redox-Flow Batteries. , 2015, Angewandte Chemie.

[29]  Erik Kjeang,et al.  Co-laminar flow cells for electrochemical energy conversion , 2014 .

[30]  Jae-Deok Jeon,et al.  Dual function of quaternary ammonium in Zn/Br redox flow battery: Capturing the bromine and lowering the charge transfer resistance , 2014 .

[31]  M. Kraume,et al.  Fluid dynamics and mass transfer at single droplets in liquid/liquid systems , 2014 .

[32]  Venkat Srinivasan,et al.  Optimization and Analysis of High‐Power Hydrogen/Bromine‐Flow Batteries for Grid‐Scale Energy Storage , 2013 .

[33]  Martin Z Bazant,et al.  Membrane-less hydrogen bromine flow battery , 2013, Nature Communications.

[34]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[35]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[36]  R. White,et al.  The Effect of the Tribromide Complex Reaction on the Oxidation/Reduction Current of the Br2/Br– Electrode , 1987 .

[37]  Ralph E. White,et al.  A Mathematical Model of a Zinc/Bromine Flow Cell , 1987 .

[38]  R. White,et al.  A Mathematical Model of a Zn / Br2 Cell on Charge , 1986 .

[39]  M. Mastragostino,et al.  Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes , 1985 .

[40]  H. Gibbard Physical chemistry of the zinc-bromine battery: I. Activity coefficients of aqueous zinc bromide , 1981 .

[41]  Jinho Chang,et al.  Quantitative determination of chemical species in high concentration ZnX2 (X = Br and I) media by steady state voltammetry on Pt ultramicroelectrode , 2018 .

[42]  Martin Z. Bazant,et al.  Boundary Layer Analysis of Membraneless Electrochemical Cells , 2013 .

[43]  A. S. Mehta Studies on debromination of sea water and aqueous sodium bromide bromate solution , 2010 .