Model effects on GLAS-based regional estimates of forest biomass and carbon

Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27 × 106 km2 study area in the Province of Québec, Canada, below the tree line. The same input datasets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include non-stratified and stratified versions of a multiple linear model where either biomass or (biomass)0.5 serves as the dependent variable. The use of different models in Québec introduces differences in Provincial dry biomass estimates of up to 0.35 G, with a range of 4.94 ± 0.28 Gt to 5.29 ± 0.36 Gt. The differences among model estimates are statistically non-significant, however, and the results demonstrate the degree to which carbon estimates vary strictly as a function of the model used to estimate regional biomass. Results also indicate that GLAS measurements become problematic with respect to height and biomass retrievals in the boreal forest when biomass values fall below 20 t ha−1 and when GLAS 75th percentile heights fall below 7 m.

[1]  R. H. Myers Classical and modern regression with applications , 1986 .

[2]  Daniel B. Botkin,et al.  Biomass of the North American Boreal Forest A step toward accurate global measures , 1990 .

[3]  John M. Norman,et al.  Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada , 1997 .

[4]  S. Nilsson,et al.  Phytomass (live biomass) and carbon of Siberian forests , 1998 .

[5]  R. Houghton,et al.  Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon , 2000, Nature.

[6]  Ronald J. Hall,et al.  Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program , 2003 .

[7]  Ross Nelson,et al.  A Portable Airborne Laser System for Forest Inventory , 2003 .

[8]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[9]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[10]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[11]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[12]  S. Magnussen,et al.  Model-based, volume-to-biomass conversion for forested and vegetated land in Canada , 2007 .

[13]  Guoqing Sun,et al.  Using MODIS and GLAS data to develop timber volume estimates in central Siberia , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[14]  R. Nelson,et al.  Regression Estimation Following the Square-Root Transformation of the Response , 2008, Forest Science.

[15]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[16]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[17]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[18]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[19]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .