Estimating nonstationary input signals from a single neuronal spike train.

Neurons temporally integrate input signals, translating them into timed output spikes. Because neurons nonperiodically emit spikes, examining spike timing can reveal information about input signals, which are determined by activities in the populations of excitatory and inhibitory presynaptic neurons. Although a number of mathematical methods have been developed to estimate such input parameters as the mean and fluctuation of the input current, these techniques are based on the unrealistic assumption that presynaptic activity is constant over time. Here, we propose tracking temporal variations in input parameters with a two-step analysis method. First, nonstationary firing characteristics comprising the firing rate and non-Poisson irregularity are estimated from a spike train using a computationally feasible state-space algorithm. Then, information about the firing characteristics is converted into likely input parameters over time using a transformation formula, which was constructed by inverting the neuronal forward transformation of the input current to output spikes. By analyzing spike trains recorded in vivo, we found that neuronal input parameters are similar in the primary visual cortex V1 and middle temporal area, whereas parameters in the lateral geniculate nucleus of the thalamus were markedly different.

[1]  Jufang He,et al.  Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model , 2010, Journal of Physiology-Paris.

[2]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[3]  Ove Ditlevsen,et al.  Parameter estimation from observations of first-passage times of the Ornstein–Uhlenbeck process and the Feller process , 2008 .

[4]  Shigeru Shinomoto,et al.  Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold , 2009, Front. Comput. Neurosci..

[5]  Jianfeng Feng,et al.  Maximum Likelihood Decoding of Neuronal Inputs from an Interspike Interval Distribution , 2009, Neural Computation.

[6]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[7]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[8]  Kikuro Fukushima,et al.  Relating Neuronal Firing Patterns to Functional Differentiation of Cerebral Cortex , 2009, PLoS Comput. Biol..

[9]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[10]  Albert K. Lee,et al.  Whole-Cell Recordings in Freely Moving Rats , 2006, Neuron.

[11]  J. Mendel Lessons in Estimation Theory for Signal Processing, Communications, and Control , 1995 .

[12]  Shigeru Shinomoto,et al.  Estimating Instantaneous Irregularity of Neuronal Firing , 2009, Neural Computation.

[13]  M. Magnasco,et al.  A Fast Algorithm for the First-Passage Times of Gauss-Markov Processes with Hölder Continuous Boundaries , 2010 .

[14]  R. Kohn,et al.  A geometrical derivation of the fixed interval smoothing algorithm , 1982 .

[15]  A. G. Nobile,et al.  A new integral equation for the evaluation of first-passage-time probability densities , 1987, Advances in Applied Probability.

[16]  Luigi M. Ricciardi,et al.  On a Stochastic Leaky Integrate-and-Fire Neuronal Model , 2010, Neural Computation.

[17]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[18]  Shigeru Tanaka,et al.  Stochastic resonance in a model neuron with reset , 1996, physics/9611014.

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[20]  Michael Brecht,et al.  Head-anchored whole-cell recordings in freely moving rats , 2009, Nature Protocols.

[21]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[22]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[23]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[24]  P. Lánský,et al.  Diffusion approximation of the neuronal model with synaptic reversal potentials , 1987, Biological Cybernetics.

[25]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Emery N. Brown,et al.  Estimating a State-space Model from Point Process Observations Emery N. Brown , 2022 .

[27]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[28]  Shigeru Shinomoto,et al.  Elemental Spiking Neuron Model for Reproducing Diverse Firing Patterns and Predicting Precise Firing Times , 2011, Front. Comput. Neurosci..

[29]  Yutaka Sakai,et al.  The Ornstein-Uhlenbeck Process Does Not Reproduce Spiking Statistics of Neurons in Prefrontal Cortex , 1999, Neural Computation.

[30]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[31]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[32]  Guido Bugmann,et al.  Role of Temporal Integration and Fluctuation Detection in the Highly Irregular Firing of a Leaky Integrator Neuron Model with Partial Reset , 1997, Neural Computation.

[33]  Satish Iyengar,et al.  Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data , 2008, Journal of Computational Neuroscience.

[34]  Eero P. Simoncelli,et al.  Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model , 2004, Neural Computation.

[35]  Shunsuke Sato,et al.  First-passage-time density and moments of the Ornstein-Uhlenbeck process , 1988 .

[36]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[37]  M. Tanner Tools for statistical inference: methods for the exploration of posterior distributions and likeliho , 1994 .

[38]  Luigi M. Ricciardi,et al.  On the parameter estimation for diffusion models of single neuron's activities , 1995, Biological Cybernetics.

[39]  R. Beatson,et al.  Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .

[40]  J. Movshon,et al.  Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque Visual Cortex , 2004, The Journal of Neuroscience.

[41]  Liam Paninski,et al.  Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model , 2007, Journal of Computational Neuroscience.

[42]  Petr Lánský,et al.  A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models , 2008, Biological Cybernetics.

[43]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[44]  Kenneth D. Miller,et al.  Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell , 1997, Neural Computation.

[45]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[46]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[47]  M. Fee,et al.  Active Stabilization of Electrodes for Intracellular Recording in Awake Behaving Animals , 2000, Neuron.

[48]  J. Movshon,et al.  The Timing of Response Onset and Offset in Macaque Visual Neurons , 2002, The Journal of Neuroscience.

[49]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[50]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[51]  J. Robson,et al.  Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance , 1992, Visual Neuroscience.

[52]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[53]  Yutaka Sakai,et al.  Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons , 1999, Neural Networks.

[54]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[55]  A. Riehle,et al.  Estimating network parameters from combined dynamics of firing rate and irregularity of single neurons. , 2011, Journal of neurophysiology.

[56]  Piet de Jong,et al.  Covariances for smoothed estimates in state space models , 1988 .

[57]  R. Stein A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. , 1965, Biophysical journal.

[58]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[59]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[60]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[61]  Lubomir Kostal,et al.  Variability Measures of Positive Random Variables , 2011, PloS one.

[62]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[63]  H. Tuckwell Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure , 1988 .

[64]  Shigeru Shinomoto,et al.  Estimation of Time-Dependent Input from Neuronal Membrane Potential , 2011, Neural Computation.

[65]  D. Contreras,et al.  Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation , 2006, The Journal of Neuroscience.