Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF- Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene

The OH groups on the Zr-based nodes of ultrastable UiO-66 can be metallated with VV ions in a facile fashion to give the derivative VUiO-66. This metallated MOF exhibits high stability over a broad temperature range and displays high selectivity for benzene under low-conversion conditions in the vapor-phase oxidative dehydrogenation of cyclohexene (activation energy ∼110 kJ/mol). The integrity of the MOF is maintained after catalysis as determined by PXRD, ICP-AES, and SEM.

[1]  J. Sauer,et al.  Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support , 2007 .

[2]  Michael J. Katz,et al.  A facile synthesis of UiO-66, UiO-67 and their derivatives. , 2013, Chemical communications.

[3]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[4]  P. Van Der Voort,et al.  Supported vanadium oxide in heterogeneous catalysis: elucidating the structure-activity relationship with spectroscopy. , 2009, Physical chemistry chemical physics : PCCP.

[5]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[6]  G. Hutchings,et al.  Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold–palladium catalysts , 2010 .

[7]  K. Zhou,et al.  Highly dispersed Au nanoparticles immobilized on Zr-based metal–organic frameworks as heterostructured catalyst for CO oxidation , 2013 .

[8]  H. García,et al.  Commercial metal-organic frameworks as heterogeneous catalysts. , 2012, Chemical communications.

[9]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[10]  Zili Wu,et al.  On the structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. , 2005, The journal of physical chemistry. B.

[11]  Hiroaki Sakurai,et al.  Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)]. , 2007, Journal of the American Chemical Society.

[12]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[13]  S. Joo,et al.  In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles , 2012, Nanoscale Research Letters.

[14]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[15]  Xingtao Gao,et al.  Investigation of Surface Structures of Supported Vanadium Oxide Catalysts by UV−vis−NIR Diffuse Reflectance Spectroscopy , 2000 .

[16]  Zili Wu,et al.  UV Raman spectroscopic studies of V/θ-Al2O3 catalysts in butane dehydrogenation , 2006 .

[17]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[18]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[19]  Lei Cheng,et al.  Structure–activity relationships for propane oxidative dehydrogenation by anatase-supported vanadium oxide monomers and dimers , 2013 .

[20]  Hong‐Cai Zhou,et al.  Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[21]  Ya-Guang Chen,et al.  A Crystalline Catalyst Based on a Porous Metal‐Organic Framework and 12‐Tungstosilicic Acid: Particle Size Control by Hydrothermal Synthesis for the Formation of Dimethyl Ether , 2011 .

[22]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[23]  R. Schomäcker,et al.  Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor. , 2013, Dalton transactions.

[24]  Peter Behrens,et al.  Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. , 2011, Chemistry.

[25]  J. Elam,et al.  Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths , 2010 .

[26]  T. Akita,et al.  Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. , 2009, Journal of the American Chemical Society.

[27]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[28]  K. Reuter,et al.  Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). , 2012, Chemical communications.

[29]  Michael J. Katz,et al.  Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. , 2014, Angewandte Chemie.

[30]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[31]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[32]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[33]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[34]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[35]  Sungsik Lee,et al.  Oxidative dehydrogenation of cyclohexene on size selected subnanometer cobalt clusters: improved catalytic performance via evolution of cluster-assembled nanostructures. , 2012, Physical chemistry chemical physics : PCCP.

[36]  Qiang Xu,et al.  CO catalytic oxidation by a metal organic framework containing high density of reactive copper sites. , 2011, Chemical communications.

[37]  Zili Wu,et al.  A comparison of catalyst deactivation of vanadia catalysts used for alkane dehydrogenation , 2006 .

[38]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[39]  Hiroaki Sakurai,et al.  Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions. , 2006, Angewandte Chemie.

[40]  P. Geerlings,et al.  Confinement effects on excitation energies and regioselectivity as probed by the Fukui function and the molecular electrostatic potential. , 2009, Physical chemistry chemical physics : PCCP.

[41]  A. Baiker,et al.  MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application , 2010 .

[42]  M. Bäumer,et al.  Vibrational spectra of alumina- and silica-supported vanadia revisited: An experimental and theoretical model catalyst study , 2004 .

[43]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[44]  K. Lillerud,et al.  In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67 , 2013, Topics in Catalysis.

[45]  G. Somorjai,et al.  Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles , 2008 .

[46]  Shengqian Ma,et al.  Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework. , 2012, Inorganic chemistry.

[47]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[48]  L. Gladden,et al.  The role of surface vanadia species in butane dehydrogenation over VOx/Al2O3 , 2009 .

[49]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[50]  T. Yildirim,et al.  Exceptional Mechanical Stability of Highly Porous Zirconium Metal-Organic Framework UiO-66 and Its Important Implications. , 2013, The journal of physical chemistry letters.

[51]  Elsje Alessandra Quadrelli,et al.  Titration of Zr3(μ-OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and Their Reaction with [AuMe(PMe3)] , 2012 .

[52]  Dawei Feng,et al.  Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. , 2013, Journal of the American Chemical Society.

[53]  H. García,et al.  Metal–organic frameworks as heterogeneous catalysts for oxidation reactions , 2011 .

[54]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .