Descent of Nanosatellite from Low Earth Orbit by Ion Beam

URL: https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MADARI-10-6411c-1107-FR-Ariadna-Ion_Beam_Shepherd_Madrid_4000101447.pdf (дата обращения: 21.05.2018). 15. Zuiani F., Vasile M. Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers // Journal of Aerospace Engineering. 2012. Vol. 2012. Article ID 836250. 22 p. DOI: https://doi.org/10.1155/2012/836250 16. Cichocki F., Merino M., Ahedo E., Smirnova M., Mingo A., Dobkevicius M. Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” missions // Journal of Propulsion and Power. 2016. Vol. 33, iss. 2. P. 370–379. DOI: https://doi.org/10.2514/1.B36105 17. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object // Acta Astronautica. 2016. Vol. 119. P. 241–251. DOI: https://doi.org/10.1016/ j.actaastro.2015.11.020 18. Aslanov V. S., Ledkov A. S. Attitude motion of cylindrical space debris during its removal by ion beam // Mathematical Problems in Engineering. 2017. Vol. 2017. Article ID 1986374. 7 p. DOI: https://doi.org/10.1155/2017/1986374 19. Aslanov V. S., Ledkov A. S. Tether-assisted re-entry capsule deorbiting from an elliptical orbit // Acta Astronautica. 2017. Vol. 130. P. 180–186. DOI: https://doi.org/10.1016/j.actaastro.2016.10.028 20. Липницкий Ю. М., Красильников А. В., Покровский А. Н., Шманенков В. Н. Нестационарная аэродинамика баллистического полета. М. : Физматлит, 2003. 176 с. 21. Андреевский В. В. Динамика спуска космических аппаратов на Землю. М. : Машиностроение, 1970. 235 с.

[1]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Ariadna Call for Ideas: Active Removal of Space Debris Ion Beam Shepherd for Contactless Debris Removal Final Report , 2011 .

[3]  Massimiliano Vasile,et al.  Preliminary Design of Debris Removal Missions by Means of Simplified Models for Low-Thrust, Many-Revolution Transfers , 2012, ArXiv.

[4]  Claudio Bombardelli,et al.  ION BEAM SHEPHERD SATELLITE FOR SPACE DEBRIS REMOVAL , 2013 .

[5]  F. Cichocki,et al.  Modeling and Simulation of EP Plasma Plume Expansion into Vacuum , 2014 .

[6]  Claude R. Phipps,et al.  A laser-optical system to re-enter or lower low Earth orbit space debris , 2014 .

[7]  Zheng H. Zhu,et al.  Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control , 2014, Auton. Robots.

[8]  Michèle Lavagna,et al.  Dynamics analysis and GNC design of flexible systems for space debris active removal , 2015 .

[9]  Sean Tuttle,et al.  Harpoon technology development for the active removal of space debris , 2015 .

[10]  A. A. Fokov,et al.  Determination of the force transmitted by an ion thruster plasma plume to an orbital object , 2016 .

[11]  Eberhard Gill,et al.  Review and comparison of active space debris capturing and removal methods , 2016 .

[12]  V. Aslanov,et al.  Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam , 2017 .

[13]  V. Aslanov Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque , 2017 .

[14]  Vladimir S. Aslanov,et al.  Tether-assisted re-entry capsule deorbiting from an elliptical orbit , 2017 .

[15]  F. Cichocki,et al.  Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” Missions , 2017 .

[16]  BLRToN C. CouR-PALArs,et al.  Collision Frequency of Artificial Satellites : The Creation of a Debris Belt , 2022 .