Geometric Complexity Theory V: On deciding nonvanishing of a generalized Littlewood-Richardson coefficient

This article has been withdrawn because it has been merged with the earlier article GCT3 (arXiv: CS/0501076 [cs.CC]) in the series. The merged article is now available as: Geometric Complexity Theory III: on deciding nonvanishing of a Littlewood-Richardson Coefficient, Journal of Algebraic Combinatorics, vol. 36, issue 1, 2012, pp. 103-110. (Authors: Ketan Mulmuley, Hari Narayanan and Milind Sohoni) The new article in this GCT5 slot in the series is: Geometric Complexity Theory V: Equivalence between blackbox derandomization of polynomial identity testing and derandomization of Noether's Normalization Lemma, in the Proceedings of FOCS 2012 (abstract), arXiv:1209.5993 [cs.CC] (full version) (Author: Ketan Mulmuley)

[1]  Jesús A. De Loera,et al.  On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..

[2]  Bernd Sturmfels,et al.  On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.

[3]  T. Tao,et al.  Honeycombs and sums of Hermitian matrices , 2000, math/0009048.

[4]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[5]  Andrei Zelevinsky,et al.  Tensor product multiplicities and convex polytopes in partition space , 1988 .

[6]  Terence Tao,et al.  The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.

[7]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[8]  Andrei Zelevinsky,et al.  Littlewood-Richardson semigroups , 1997, math/9704228.

[9]  Ronald C. King,et al.  Stretched Littlewood-Richardson coefficients and Kostka coefficients , 2004 .

[10]  Pavel Winternitz Symmetry in physics : in memory of Robert T. Sharp , 2004 .

[11]  Etienne Rassart A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.

[12]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[13]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[14]  Ketan Mulmuley,et al.  Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients , 2005, ArXiv.

[15]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .