暂无分享,去创建一个
[1] Jesús A. De Loera,et al. On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..
[2] Bernd Sturmfels,et al. On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.
[3] T. Tao,et al. Honeycombs and sums of Hermitian matrices , 2000, math/0009048.
[4] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[5] Andrei Zelevinsky,et al. Tensor product multiplicities and convex polytopes in partition space , 1988 .
[6] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[7] Éva Tardos,et al. A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..
[8] Andrei Zelevinsky,et al. Littlewood-Richardson semigroups , 1997, math/9704228.
[9] Ronald C. King,et al. Stretched Littlewood-Richardson coefficients and Kostka coefficients , 2004 .
[10] Pavel Winternitz. Symmetry in physics : in memory of Robert T. Sharp , 2004 .
[11] Etienne Rassart. A polynomiality property for Littlewood-Richardson coefficients , 2004, J. Comb. Theory, Ser. A.
[12] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[13] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[14] Ketan Mulmuley,et al. Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients , 2005, ArXiv.
[15] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .