NATURAL TRANSITION ORBITALS

A means of finding a compact orbital representation for the electronic transition density matrix is described. The technique utilizes the corresponding orbital transformation of Amos and Hall and allows a dramatic simplification in the qualitative description of an electronic transition.

[1]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[2]  G. Pourtois,et al.  Photophysical properties of ruthenium(II) polyazaaromatic compounds: a theoretical insight. , 2004, Journal of the American Chemical Society.

[3]  J. Brozik,et al.  The Excited-State Symmetry Characteristics of Platinum Phenylacetylene Compounds , 2003 .

[4]  M. K. Brennaman,et al.  Turning the [Ru(bpy)2dppz]2+ light-switch on and off with temperature. , 2002, Journal of the American Chemical Society.

[5]  D. Dattelbaum,et al.  Application of time-resolved infrared spectroscopy to electronic structure in metal-to-ligand charge-transfer excited states. , 2002, Inorganic chemistry.

[6]  J. Fabian,et al.  Calculation of excitation energies of organic chromophores: a critical evaluation , 2002 .

[7]  Mark A. Ratner,et al.  Accurate Prediction of Band Gaps in Neutral Heterocyclic Conjugated Polymers , 2002 .

[8]  K. Schanze,et al.  Photophysics of monodisperse platinum-acetylide oligomers: delocalization in the singlet and triplet excited states. , 2002, Journal of the American Chemical Society.

[9]  Richard H. Friend,et al.  The singlet-triplet energy gap in organic and Pt-containing phenylene ethynylene polymers and monomers , 2002 .

[10]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[11]  A. S. Dhoot,et al.  Spin-dependent exciton formation in π-conjugated compounds , 2001, Nature.

[12]  M. Head‐Gordon,et al.  Excitation Energies from Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Butadiene to Decapentaene , 2001 .

[13]  A. Saxena,et al.  CEO/semiempirical calculations of UV–visible spectra in conjugated molecules , 2000 .

[14]  E. Baerends,et al.  Towards excitation energies and (hyper)polarizability calculations of large molecules. Application of parallelization and linear scaling techniques to time‐dependent density functional response theory , 2000 .

[15]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[16]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[17]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[18]  M. Kappes,et al.  Experiment versus Time Dependent Density Functional Theory Prediction of Fullerene Electronic Absorption , 1998 .

[19]  P. Barbara,et al.  First Observation of the Key Intermediate in the “Light-Switch” Mechanism of [Ru(phen)2dppz]2+ , 1997 .

[20]  J. V. Ortiz The Electron Propagator Picture of Molecular Electronic Structure , 1997 .

[21]  Gross,et al.  Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.

[22]  Thomas V. Russo,et al.  Effective Core Potentials for DFT Calculations , 1995 .

[23]  Martin Head-Gordon,et al.  ANALYSIS OF ELECTRONIC TRANSITIONS AS THE DIFFERENCE OF ELECTRON ATTACHMENT AND DETACHMENT DENSITIES , 1995 .

[24]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[25]  N. Turro,et al.  Characterization of dipyridophenazine complexes of ruthenium(II): the light switch effect as a function of nucleic acid sequence and conformation. , 1992, Biochemistry.

[26]  J. Barton,et al.  Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA , 1992 .

[27]  S. Friedman,et al.  The core element of the EcoRII methylase as defined by protease digestion and deletion analysis. , 1991, Nucleic acids research.

[28]  N. Turro,et al.  Molecular light switch for DNA : Ru(bpy)2(dppz)2+ , 1990 .

[29]  Michael C. Zerner,et al.  Calculated spectra of hydrated ions of the first transition-metal series , 1986 .

[30]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[31]  A. Voter,et al.  A method for describing resonance between generalized valence bond wavefunctions , 1981 .

[32]  R. L. Martin Localized excitations in pyrazine and p‐benzoquinone. A valence bond model , 1981 .

[33]  Richard L. Martin,et al.  Halogen atomic and diatomic1shole states , 1977 .

[34]  G. G. Hall,et al.  Single determinant wave functions , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .