Pattern classification by using improved wavelet Compressed Zernike Moments

In this paper, an improved Feature Extraction Method (FEM), which selects discriminative feature sets able to lead to high classification rates in pattern recognition tasks, is presented. The resulted features are the wavelet coefficients of an improved compressed signal, consisting of the Zernike moments amplitudes. By applying a straightforward methodology, it is aimed to construct optimal feature vectors in the sense of vector dimensionality and information content for classification purposes. The resulting surrogate feature vector is of lower dimensionality than the original Zernike moment feature vector and thus more appropriate for pattern recognition tasks. Appropriate validation tests have been arranged, in order to investigate the performance of the proposed algorithm by measuring the discriminative power of the new feature vectors despite the information loss.

[1]  K. R. Ramakrishnan,et al.  Fast computation of Legendre and Zernike moments , 1995, Pattern Recognit..

[2]  M. Zhenjiang Zernike moment-based image shape analysis and its application , 2000 .

[3]  Alireza Khotanzad,et al.  Classification of invariant image representations using a neural network , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Dimitris A. Karras,et al.  A new class of Zernike moments for computer vision applications , 2007, Inf. Sci..

[5]  Huazhong Shu,et al.  A novel algorithm for fast computation of Zernike moments , 2002, Pattern Recognit..

[6]  Carl G. Looney,et al.  Pattern recognition using neural networks , 1997 .

[7]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Yiannis S. Boutalis,et al.  On the Reconstruction Performance of Compressed Orthogonal Moments , 2004, ICINCO.

[9]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..

[10]  Peng Jia-xiong,et al.  Invariance analysis of improved Zernike moments , 2002 .

[11]  Carl G. Looney,et al.  Pattern recognition using neural networks: theory and algorithms for engineers and scientists , 1997 .

[12]  M. Teague Image analysis via the general theory of moments , 1980 .

[13]  Raveendran Paramesran,et al.  New computational methods for full and subset Zernike moments , 2004, Inf. Sci..

[14]  Dong-Gyu Sim,et al.  Invariant texture retrieval using modified Zernike moments , 2004, Image Vis. Comput..

[15]  Dimitris A. Karras,et al.  Image coding using a wavelet based Zernike moments compression technique , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[16]  Ramakrishnan Mukundan A Contour Integration Method for the Computation of Zernike Moments of a Binary Image , 1997 .

[17]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[18]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[19]  Mandyam D. Srinath,et al.  Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments , 2002, Pattern Recognit..

[20]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[21]  Majid Ahmadi,et al.  Efficient algorithm for fast computation of Zernike moments , 1996 .

[22]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .