The effect of the endothelial glycocalyx layer on concentration polarisation of low density lipoprotein in arteries.

[1]  P. Vincent,et al.  The effect of a spatially heterogeneous transmural water flux on concentration polarization of low density lipoprotein in arteries. , 2009, Biophysical journal.

[2]  Spencer J. Sherwin,et al.  Viscous flow over outflow slits covered by an anisotropic Brinkman medium: A model of flow above interendothelial cell clefts , 2008 .

[3]  V. Hlady,et al.  Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[4]  Sheldon Weinbaum,et al.  The structure and function of the endothelial glycocalyx layer. , 2007, Annual review of biomedical engineering.

[5]  J. Tarbell,et al.  In vitro study of LDL transport under pressurized (convective) conditions. , 2007, American journal of physiology. Heart and circulatory physiology.

[6]  J. van Marle,et al.  Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes. , 2006, The Biochemical journal.

[7]  J. Spaan,et al.  Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. , 2006, American journal of physiology. Heart and circulatory physiology.

[8]  D. Toomre,et al.  Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains , 2006, Nature Cell Biology.

[9]  S. Wada,et al.  Theoretical study of the effect of local flow disturbances on the concentration of low-density lipoproteins at the luminal surface of end-to-end anastomosed vessels , 2002, Medical and Biological Engineering and Computing.

[10]  J. Spaan,et al.  Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. , 2006, American journal of physiology. Heart and circulatory physiology.

[11]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[12]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[13]  E. Damiano,et al.  Flow and deformation of the capillary glycocalyx in the wake of a leukocyte , 2005 .

[14]  R. J. Wilson,et al.  Spectral / hp Element Methods for Computational Fluid Dynamics Second , 2005 .

[15]  Michael L. Smith,et al.  Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics , 2004, Journal of Fluid Mechanics.

[16]  Oleg Iliev,et al.  On numerical simulation of flow through oil filters , 2004 .

[17]  Thomas M. Stace,et al.  On the motion of a sphere in a Stokes flow parallel to a Brinkman half-space , 2004, Journal of Fluid Mechanics.

[18]  S. Wada,et al.  Theoretical Prediction of Low-Density Lipoproteins Concentration at the Luminal Surface of an Artery with a Multiple Bend , 2002, Annals of Biomedical Engineering.

[19]  J. Spaan,et al.  Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. , 2003, American journal of physiology. Heart and circulatory physiology.

[20]  Bin Chen,et al.  A model for the modulation of microvessel permeability by junction strands. , 2003, Journal of biomechanical engineering.

[21]  David S. Long,et al.  Near-Wall μ-PIV Reveals a Hydrodynamically Relevant Endothelial Surface Layer in Venules In Vivo , 2003 .

[22]  A. Hubbard,et al.  Transcytosis: crossing cellular barriers. , 2003, Physiological reviews.

[23]  David S. Park,et al.  Caveolin, Caveolae, and Endothelial Cell Function , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[24]  Guixue Wang,et al.  Concentration polarization of macromolecules in canine carotid arteries and its implication for the localization of atherogenesis. , 2003, Journal of biomechanics.

[25]  K. Ley,et al.  Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. , 2003, Biophysical journal.

[26]  M. Simionescu,et al.  Transcytosis of plasma macromolecules in endothelial cells: A cell biological survey , 2002, Microscopy research and technique.

[27]  A. Pries,et al.  Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. , 2001, American journal of physiology. Heart and circulatory physiology.

[28]  Karl Perktold,et al.  Computational Modeling of Macromolecule Transport in the Arterial Wall , 2001 .

[29]  B. Duling,et al.  Capillary endothelial surface layer selectively reduces plasma solute distribution volume. , 2000, American journal of physiology. Heart and circulatory physiology.

[30]  C. Michel,et al.  Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years , 1997, Experimental physiology.

[31]  B. Duling,et al.  Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. , 1996, Circulation research.

[32]  Andrew L. Zydney,et al.  Microfiltration and Ultrafiltration: Principles and Applications , 1996 .

[33]  L. Nielsen,et al.  Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis. , 1996, Atherosclerosis.

[34]  J. Kuo,et al.  Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of rat arteries. , 1995, Atherosclerosis.

[35]  R. Guidoin,et al.  Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries. , 1995, Journal of vascular surgery.

[36]  R. Adamson,et al.  Pathways through the intercellular clefts of frog mesenteric capillaries. , 1993, The Journal of physiology.

[37]  R. Adamson,et al.  Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. , 1992, The Journal of physiology.

[38]  S. Weinbaum,et al.  Transendothelial Transport of Low Density Lipoprotein in Association with Cell Mitosis in Rat Aorta , 1989, Arteriosclerosis.

[39]  G Clough,et al.  Quantitative comparisons of hydraulic permeability and endothelial intercellular cleft dimensions in single frog capillaries. , 1988, The Journal of physiology.

[40]  J. Levick Flow through interstitium and other fibrous matrices. , 1987, Quarterly journal of experimental physiology.

[41]  M. Lever,et al.  Filtration through damaged and undamaged rabbit thoracic aorta. , 1984, The American journal of physiology.

[42]  C. P. Winlove,et al.  Diffusion of macromolecules in hyaluronate gels. I. Development of methods and preliminary results. , 1984, Biorheology.

[43]  N. Simionescu,et al.  Visualization of the binding, endocytosis, and transcytosis of low- density lipoprotein in the arterial endothelium in situ , 1983, The Journal of cell biology.

[44]  R. Lees,et al.  The distribution of labeled low-density lipoproteins across the rabbit thoracic aorta in vivo. , 1977, Atherosclerosis.