The ABC of APC.

Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease characterized by the presence of adenomatous polyps in the colon and rectum, with inevitable development of colorectal cancer if left untreated. FAP is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Somatic mutations in the APC gene are an early event in colorectal tumorigenesis, and can be detected in the majority of colorectal tumours. The APC gene encodes a large protein with multiple cellular functions and interactions, including roles in signal transduction in the wnt-signalling pathway, mediation of intercellular adhesion, stabilization of the cytoskeleton and possibly regulation of the cell cycle and apoptosis. The fact that APC is an integral part of so many different pathways makes it an ideal target for mutation in carcinogenesis. This review deals with our understanding to date of how mutations in the APC gene translate into changes at the protein level, which in turn contribute to the role of APC in tumorigenesis.

[1]  Y. Xiong,et al.  HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IκB and β-catenin , 1999, Oncogene.

[2]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[3]  Akira Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin , 1998 .

[4]  W. Nelson,et al.  Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  W. Bodmer,et al.  Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Bienz,et al.  Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo , 2000, Current Biology.

[7]  W. Birchmeier,et al.  Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. , 1998, Science.

[8]  K. Kinzler,et al.  Analysis of masked mutations in familial adenomatous polyposis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Scott,et al.  Mutational analysis of the first 14 exons of the adenomatous polyposis coli (APC) gene. , 1994, European journal of cancer.

[10]  M. Peifer,et al.  The product of the Drosophila segment polarity gene armadillo is part of a multi-protein complex resembling the vertebrate adherens junction. , 1993, Journal of cell science.

[11]  Randall T Moon,et al.  Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways , 1999, Oncogene.

[12]  P. Propping,et al.  Familial adenomatous polyposis: mutation at codon 1309 and early onset of colon cancer , 1994, The Lancet.

[13]  A. Markham,et al.  Regulation and function of the interaction between the APC tumour suppressor protein and EB1 , 2000, Oncogene.

[14]  Paul Polakis,et al.  Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β , 1998, Current Biology.

[15]  A. P. Soler,et al.  Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin , 1995, The Journal of cell biology.

[16]  T. Akiyama,et al.  Down-regulation of β-Catenin by the Colorectal Tumor Suppressor APC Requires Association with Axin and β-Catenin* , 2000, The Journal of Biological Chemistry.

[17]  S. H. Rider,et al.  Chromosome 5 allele loss in human colorectal carcinomas , 1987, Nature.

[18]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[19]  A. Spigelman,et al.  Colorectal polyp counts and cancer risk in familial adenomatous polyposis. , 1996, Gastroenterology.

[20]  M. Bienz,et al.  A new Drosophila APC homologue associated with adhesive zones of epithelial cells , 1999, Nature Cell Biology.

[21]  J. Cooper,et al.  A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein , 1998, Nature.

[22]  J. Papkoff,et al.  Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin , 1994, The Journal of cell biology.

[23]  H. Ostrer,et al.  Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC , 1997, Nature Genetics.

[24]  J. Arends,et al.  EB/RP gene family encodes tubulin binding proteins , 1999, International journal of cancer.

[25]  P. Polakis,et al.  Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Raymond L. White,et al.  Regulation of β-Catenin Signaling by the B56 Subunit of Protein Phosphatase 2A , 1999 .

[27]  H. Usui,et al.  GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by β-catenin and protein phosphatase 2A complexed with Axin , 2000, Oncogene.

[28]  W. Bodmer,et al.  Genetic steps in colorectal cancer , 1994, Nature Genetics.

[29]  F. C. Lucibello,et al.  Localization of the gene for familial adenomatous polyposis on chromosome 5 , 1987, Nature.

[30]  M. Bisgaard,et al.  Familial adenomatous polyposis (FAP): Frequency, penetrance, and mutation rate , 1994, Human mutation.

[31]  T. Akiyama Wnt/beta-catenin signaling. , 2000, Cytokine & growth factor reviews.

[32]  Rodney J. Scott,et al.  Germline mutations in the 3′ part of APC exon 15 do not result in truncated proteins and are associated with attenuated adenomatous polyposis coli , 1996, Human Genetics.

[33]  T. Vasicek,et al.  Phenotypic and molecular analysis of a transgenic insertional allele of the mouse Fused locus. , 1995, Genetics.

[34]  D. Hicks,et al.  Cell-cell contact and specific cytokines inhibit apoptosis of colonic epithelial cells: growth factors protect against c-myc-independent apoptosis. , 1997, British Journal of Cancer.

[35]  S Ichii,et al.  Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. , 1992, Human molecular genetics.

[36]  W. Bodmer,et al.  Phenotypic expression in familial adenomatous polyposis: partial prediction by mutation analysis. , 1994, Gut.

[37]  W. Bodmer,et al.  Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. , 1998, The EMBO journal.

[39]  P. Polakis,et al.  Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. , 1998, Current biology : CB.

[40]  Yusuke Nakamura,et al.  Mutations of the APC adenomatous polyposis coli) gene , 1993, Human mutation.

[41]  M. Emi,et al.  Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). , 1993, Oncogene.

[42]  F. Costantini,et al.  Identification of a Domain of Axin That Binds to the Serine/Threonine Protein Phosphatase 2A and a Self-binding Domain* , 1999, The Journal of Biological Chemistry.

[43]  G. Petersen,et al.  Phenotypic variability of familial adenomatous polyposis in 11 unrelated families with identical APC gene mutation. , 1994, Gastroenterology.

[44]  T. Akiyama,et al.  The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. , 1995, The EMBO journal.

[45]  Rudolf Grosschedl,et al.  Modulation of Transcriptional Regulation by LEF-1 in Response to Wnt-1 Signaling and Association with β-Catenin , 1998, Molecular and Cellular Biology.

[46]  D L Rimm,et al.  Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[48]  P. Polakis,et al.  The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin. , 1995, The Journal of biological chemistry.

[49]  B. Henderson Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover , 2000, Nature Cell Biology.

[50]  Ian Tomlinson,et al.  The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis , 1999, Nature Medicine.

[51]  B. Leggett,et al.  A family with attenuated familial adenomatous polyposis due to a mutation in the alternatively spliced region of APC exon 9 , 1998, Human mutation.

[52]  M. Kobayashi,et al.  Nuclear translocation of beta-catenin in colorectal cancer , 2000, British Journal of Cancer.

[53]  B. Bauduceau,et al.  [Association of Gardner syndrome and thyroid carcinoma]. , 1995, Presse medicale.

[54]  Mariann Bienz,et al.  The APC tumour suppressor has a nuclear export function , 2000, Nature.

[55]  Paul Polakis,et al.  The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors , 1999, Oncogene.

[56]  T. Akiyama,et al.  The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase , 2000, Oncogene.

[57]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[58]  L. Aaltonen,et al.  The I1307K polymorphism of the APC gene in colorectal cancer. , 1999, Gastroenterology.

[59]  B. Bierer,et al.  Eb1 Proteins Regulate Microtubule Dynamics, Cell Polarity, and Chromosome Stability , 2000, The Journal of cell biology.

[60]  D. Lane,et al.  APC EXPRESSION IN NORMAL HUMAN TISSUES , 1997, The Journal of pathology.

[61]  K. Goss,et al.  Biology of the adenomatous polyposis coli tumor suppressor. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  W. Bodmer,et al.  Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells , 1998 .

[63]  M. Kitagawa,et al.  An F‐box protein, FWD1, mediates ubiquitin‐dependent proteolysis of β‐catenin , 1999, The EMBO journal.

[64]  J. Mann,et al.  Association between hepatoblastoma and polyposis coli. , 1983, Archives of disease in childhood.

[65]  Illinois.,et al.  Cancer Genetics , 1976, British Journal of Cancer.

[66]  K. Kinzler,et al.  The molecular basis of Turcot's syndrome. , 1995, The New England journal of medicine.

[67]  D. Eccles,et al.  Genotype-phenotype correlations of new causative APC gene mutations in patients with familial adenomatous polyposis. , 1995, Journal of medical genetics.

[68]  C. Trempe,et al.  Hypertrophy of the retinal pigment epithelium associated with Gardner's syndrome. , 1980, American journal of ophthalmology.

[69]  E. Gardner Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts. , 1962, American journal of human genetics.

[70]  E. Naylor,et al.  Adrenal adenomas in a patient with Gardner's syndrome , 1981, Clinical genetics.

[71]  P. Polakis The oncogenic activation of beta-catenin. , 1999, Current opinion in genetics & development.

[72]  W. Bodmer,et al.  Integrin cell adhesion molecules and colorectal cancer , 1990, The Journal of pathology.

[73]  Shoichiro Tsukita,et al.  Adenomatous Polyposis Coli (APC) Protein Moves along Microtubules and Concentrates at Their Growing Ends in Epithelial Cells , 2000, The Journal of cell biology.

[74]  P. Polakis,et al.  Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. , 1997, Cancer research.

[75]  N. Thakker,et al.  Severe Gardner syndrome in families with mutations restricted to a specific region of the APC gene. , 1995, American journal of human genetics.

[76]  Norbert Perrimon,et al.  Components of wingless signalling in Drosophila , 1994, Nature.

[77]  B. Gumbiner,et al.  Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin , 1998, Current Biology.

[78]  M. Ringwald,et al.  Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. White,et al.  Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Y. Nakamura,et al.  Multiple forms of the APC gene transcripts and their tissue-specific expression. , 1993, Human molecular genetics.

[81]  Stephen W. Byers,et al.  Serine Phosphorylation-regulated Ubiquitination and Degradation of β-Catenin* , 1997, The Journal of Biological Chemistry.

[82]  W. Weis,et al.  Structural basis of the Axin–adenomatous polyposis coli interaction , 2000, The EMBO journal.

[83]  A. Brown,et al.  Expression of Wnt-1 in PC12 cells results in modulation of plakoglobin and E-cadherin and increased cellular adhesion , 1993, The Journal of cell biology.

[84]  D. Pellman,et al.  The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  P. McCrea,et al.  Embryonic axis induction by the armadillo repeat domain of beta- catenin: evidence for intracellular signaling , 1995, The Journal of cell biology.

[86]  Paul Polakis,et al.  Binding of GSK3β to the APC-β-Catenin Complex and Regulation of Complex Assembly , 1996, Science.

[87]  A. Wyllie,et al.  Germline APC mutation (Gln1317) in a cancer‐prone family that does not result in familial adenomatous polyposis , 1996, Genes, chromosomes & cancer.

[88]  R Kemler,et al.  beta-catenin is a target for the ubiquitin-proteasome pathway. , 1997, The EMBO journal.

[89]  F. Giardiello,et al.  Risk of hepatoblastoma in familial adenomatous polyposis. , 1991, The Journal of pediatrics.

[90]  P. Hartge,et al.  The APC I1307K allele and cancer risk in a community-based study of Ashkenazi Jews , 1998, Nature Genetics.

[91]  Paul Polakis,et al.  The oncogenic activation of β-catenin , 1999 .

[92]  P. Rozen,et al.  Notable intrafamilial phenotypic variability in a kindred with familial adenomatous polyposis and an APCmutation in exon 9 , 1999, Gut.

[93]  J. Hegemann,et al.  Mal3, the Fission Yeast Homologue of the Human APC-interacting Protein EB-1 Is Required for Microtubule Integrity and the Maintenance of Cell Form , 1997, Journal of Cell Biology.

[94]  L. Williams,et al.  Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[95]  W. Ballhausen,et al.  Multiple APC messenger RNA isoforms encoding exon 15 short open reading frames are expressed in the context of a novel exon 10A‐derived sequence , 1995, International journal of cancer.

[96]  S. Nishizuka,et al.  Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia , 2000, Oncogene.

[97]  W. Bodmer,et al.  Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas , 1992, The Lancet.

[98]  R Grosschedl,et al.  Functional interaction of beta-catenin with the transcription factor LEF-1. , 1996, Nature.

[99]  S. Gallinger,et al.  Inherited colorectal polyposis and cancer risk of the APC I1307K polymorphism. , 1999, American journal of human genetics.

[100]  J. Church,et al.  APC genotype, polyp number, and surgical options in familial adenomatous polyposis. , 1998, Annals of surgery.

[101]  P. Polakis,et al.  Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. , 1996, Science.

[102]  W F Bodmer,et al.  The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[103]  S. Gayther,et al.  Regionally clustered APC mutations are associated with a severe phenotype and occur at a high frequency in new mutation cases of adenomatous polyposis coli. , 1994, Human molecular genetics.

[104]  R. Moon,et al.  Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. , 1999, Science.

[105]  A. Markham,et al.  EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle , 1998, Oncogene.

[106]  V. Kosma,et al.  Hypermethylation of the APC (adenomatous Polyposis Coli) gene promoter region in human colorectal carcinoma , 1997, International journal of cancer.

[107]  H Clevers,et al.  TCF transcription factors: molecular switches in carcinogenesis. , 1999, Biochimica et biophysica acta.

[108]  J. Herman,et al.  Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. , 2000, Cancer research.

[109]  S. Powell,et al.  Hereditary Desmoid Disease in a Family with a Germline Alu I Repeat Mutation of the APC Gene , 1999, Human Heredity.

[110]  G. Petersen,et al.  Phenotypic Expression of Disease in Families That Have Mutations in the 5 Region of the Adenomatous Polyposis Coli Gene , 1997, Annals of Internal Medicine.

[111]  G. Thomas,et al.  Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients , 1993, Cell.

[112]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[113]  M. Bertagnolli,et al.  Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. , 1997, Cancer research.

[114]  Akira Kikuchi,et al.  DIX Domains of Dvl and Axin Are Necessary for Protein Interactions and Their Ability To Regulate β-Catenin Stability , 1999, Molecular and Cellular Biology.

[115]  Barbara E. Bierer,et al.  The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain , 1999, Current Biology.

[116]  P. LOCKHART-MUMMERY CANCER AND HEREDITY. , 1925 .

[117]  C. L. Adams,et al.  The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration , 1996, The Journal of cell biology.

[118]  B. Gumbiner Signal transduction of beta-catenin. , 1995, Current opinion in cell biology.

[119]  J. Gordon,et al.  Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Margaret Robertson,et al.  Identification and characterization of the familial adenomatous polyposis coli gene , 1991, Cell.

[121]  C. Kintner Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain , 1992, Cell.

[122]  Norbert Perrimon,et al.  dishevelled and armadillo act in the Wingless signalling pathway in Drosophila , 1994, Nature.

[123]  P. Polakis,et al.  The APC Protein and E-cadherin Form Similar but Independent Complexes with α-Catenin, β-Catenin, and Plakoglobin (*) , 1995, The Journal of Biological Chemistry.

[124]  I Tomlinson,et al.  Germline APC variants in patients with multiple colorectal adenomas, with evidence for the particular importance of E1317Q. , 2000, Human molecular genetics.

[125]  G. Thomas,et al.  Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. , 1995, Human molecular genetics.

[126]  Z. Cohen,et al.  Genotype-phenotype correlations in attenuated adenomatous polyposis coli. , 1998, American journal of human genetics.

[127]  R. Weinberg,et al.  Suppression of intestinal neoplasia by DNA hypomethylation , 1995, Cell.

[128]  E. Wieschaus,et al.  A Drosophila homolog of the tumor suppressor gene adenomatous polyposis coli down-regulates beta-catenin but its zygotic expression is not essential for the regulation of Armadillo. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[129]  S. Byers,et al.  Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. , 1997, The Journal of biological chemistry.

[130]  H Weissig,et al.  Assembly of the cadherin-catenin complex in vitro with recombinant proteins. , 1994, Journal of cell science.

[131]  R. Fodde,et al.  Familial adenomatous polyposis associated with multiple adrenal adenomas in a patient with a rare 3′ APC mutation , 1999, Journal of medical genetics.

[132]  G. Thomas,et al.  Alleles of the APC gene: An attenuated form of familial polyposis , 1993, Cell.

[133]  E. Wieschaus,et al.  腺腫性結腸ポリープ癌抑制遺伝子のショウジョウバエ相同体はβ‐カテニンをダウンレギュレートするが,その接合体発現はアルマジロ蛋白質の調節に必須ではない , 1997 .

[134]  C. Albanese,et al.  The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Brent,et al.  APC binds to the novel protein EB1. , 1995, Cancer research.

[136]  G. Petersen,et al.  Hepatoblastoma and APC gene mutation in familial adenomatous polyposis. , 1996, Gut.

[137]  K. Kinzler,et al.  Association between wild type and mutant APC gene products. , 1993, Cancer research.

[138]  R Kucherlapati,et al.  Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. , 1999, Genes & development.

[139]  Bert Vogelstein,et al.  APC mutations occur early during colorectal tumorigenesis , 1992, Nature.

[140]  J. Deka,et al.  A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein tau. , 1998, European journal of biochemistry.

[141]  Rappold,et al.  Human Molecular Genetics , 1996, Nature Medicine.

[142]  I. Tomlinson,et al.  Explaining differences in the severity of familial adenomatous polyposis and the search for modifier genes , 2001, Gut.

[143]  M. Rook,et al.  Identification of connexin43 as a functional target for Wnt signalling. , 1998, Journal of cell science.

[144]  P. Polakis,et al.  The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. , 1994, Cancer research.

[145]  R. Nusse,et al.  Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. , 1999, Genes & development.

[146]  T. Noda,et al.  Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. , 1995, Oncogene.

[147]  K. Kinzler,et al.  Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[148]  F. Giardiello,et al.  The risk of upper gastrointestinal cancer in familial adenomatous polyposis. , 1992, Gastroenterology.

[149]  J. Barber,et al.  Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. , 1996, American journal of human genetics.

[150]  K. Koretz,et al.  In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. , 1995, Gut.

[151]  S. Altschul,et al.  Identification of FAP locus genes from chromosome 5q21. , 1991, Science.

[152]  W. Bodmer Familial adenomatous polyposis (FAP) and its gene, APC , 1999, Cytogenetic and Genome Research.

[153]  Hideki Yamamoto,et al.  Axin, a Negative Regulator of the Wnt Signaling Pathway, Directly Interacts with Adenomatous Polyposis Coli and Regulates the Stabilization of β-Catenin* , 1998, The Journal of Biological Chemistry.

[154]  L. Williams,et al.  Bridging of β-catenin and glycogen synthase kinase-3β by Axin and inhibition of β-catenin-mediated transcription , 1998 .

[155]  J. Klingensmith,et al.  The dishevelled protein is modified by wingless signaling in Drosophila. , 1995, Genes & development.

[156]  Andreas Hecht,et al.  Functional Characterization of Multiple Transactivating Elements in β-Catenin, Some of Which Interact with the TATA-binding Proteinin Vitro * , 1999, The Journal of Biological Chemistry.

[157]  K. Kinzler,et al.  Association of the APC tumor suppressor protein with catenins. , 1993, Science.

[158]  B. Cullen,et al.  Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[159]  S. Orsulic,et al.  An in vivo structure-function study of armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling , 1996, The Journal of cell biology.

[160]  B. Bapat,et al.  Evidence for a novel exon in the coding region of the adenomatous polyposis coli (APC) gene. , 1995, Genomics.

[161]  K. Kinzler,et al.  The APC gene product in normal and tumor cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[162]  G. Joslyn,et al.  Dimer formation by an N-terminal coiled coil in the APC protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[163]  J. Peto,et al.  Prevalence of the APC E1317Q variant in colorectal cancer patients. , 2000, Cancer letters.

[164]  F. McCormick,et al.  Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. , 1999, Nature.

[165]  K. Müller,et al.  The APC protein binds to A/T rich DNA sequences , 1999, Oncogene.

[166]  R. Benarous,et al.  The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. , 1999, Current biology : CB.

[167]  V. Fazio,et al.  Desmoid Tumors in Familial Polyposis Coli , 1986, Annals of surgery.

[168]  R. Moon,et al.  The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. , 1996, Genes & development.

[169]  P. Rougier,et al.  Absence of somatic alterations of the EB1 gene adenomatous polyposis coli-associated protein in human sporadic colorectal cancers. , 1998, British Journal of Cancer.

[170]  R. Harned,et al.  Familial polyposis coli and periampullary malignancy , 1982, Diseases of the colon and rectum.

[171]  R. Benarous,et al.  The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell , 1999, Current Biology.

[172]  R. Poulsom,et al.  Experimental ulceration leads to sequential expression of spasmolytic polypeptide, intestinal trefoil factor, epidermal growth factor and transforming growth factor alpha mRNAs in rat stomach , 1995, The Journal of pathology.

[173]  Erwin G. Van Meir,et al.  Brain tumor-polyposis syndrome: two genetic diseases? , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[174]  K. Kinzler,et al.  Apoptosis and APC in colorectal tumorigenesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[175]  L. Strong,et al.  Hepatoblastoma and familial adenomatous polyposis. , 1988, Journal of the National Cancer Institute.

[176]  K. Kinzler,et al.  Asef , a Link Between the Tumor Suppressor APC and G-Protein Signaling , 2022 .

[177]  W F Bodmer,et al.  Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[178]  P. Polakis,et al.  Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein , 1996, Molecular and cellular biology.

[179]  Thierry Soussi,et al.  APC gene: database of germline and somatic mutations in human tumors and cell lines , 1996, Nucleic Acids Res..

[180]  R. Kemler,et al.  The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. , 1989, The EMBO journal.

[181]  J Straub,et al.  APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[182]  Volkmar Lessmann,et al.  The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain , 2000, Oncogene.

[183]  M. Takeichi,et al.  Cell binding function of E‐cadherin is regulated by the cytoplasmic domain. , 1988, The EMBO journal.

[184]  M J Bissell,et al.  The influence of the microenvironment on the malignant phenotype. , 2000, Molecular medicine today.

[185]  T. Dale,et al.  Interaction of Axin and Dvl‐2 proteins regulates Dvl‐2‐stimulated TCF‐dependent transcription , 1999, The EMBO journal.

[186]  W. Birchmeier,et al.  E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton , 1994, The Journal of cell biology.

[187]  Wei Hsu,et al.  The Mouse Fused Locus Encodes Axin, an Inhibitor of the Wnt Signaling Pathway That Regulates Embryonic Axis Formation , 1997, Cell.

[188]  S. Orsulic,et al.  Negative regulation of Armadillo, a Wingless effector in Drosophila. , 1997, Development.

[189]  J Mao,et al.  Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt‐mediated regulation of LEF‐1 , 1999, The EMBO journal.

[190]  Z. Zakov,et al.  Congenital hypertrophy of the retinal pigment epithelium in familial adenomatous polyposis. , 1989, Ophthalmology.

[191]  P. Polakis The adenomatous polyposis coli (APC) tumor suppressor. , 1997, Biochimica et biophysica acta.

[192]  T. Akiyama,et al.  Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. , 1999, Science.

[193]  L. Williams,et al.  Functional Domains of Axin , 1999, The Journal of Biological Chemistry.

[194]  T. Akiyama,et al.  Down-regulation of beta-catenin by the colorectal tumor suppressor APC requires association with Axin and beta-catenin. , 2000, The Journal of biological chemistry.

[195]  Hideki Yamamoto,et al.  Phosphorylation of Axin, a Wnt Signal Negative Regulator, by Glycogen Synthase Kinase-3β Regulates Its Stability* , 1999, The Journal of Biological Chemistry.

[196]  T. Akiyama,et al.  Axin, an inhibitor of the Wnt signalling pathway, interacts with β‐catenin, GSK‐3β and APC and reduces the β‐catenin level , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[197]  D. Eccles,et al.  An unusually severe phenotype for familial adenomatous polyposis , 1997, Archives of disease in childhood.

[198]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[199]  K. Kinzler,et al.  Inactivation of both APC alleles in human and mouse tumors. , 1994, Cancer research.

[200]  M. Sivak,et al.  Gastroduodenal polyps in patients with familial adenomatous polyposis , 1992, Diseases of the colon and rectum.

[201]  T. Akiyama,et al.  Binding of APC to the Human Homolog of the Drosophila Discs Large Tumor Suppressor Protein , 1996, Science.

[202]  A. Sandberg,et al.  Gardner syndrome in a man with an interstitial deletion of 5q. , 1986, American journal of medical genetics.

[203]  H. Bussey,et al.  UPPER GASTROINTESTINAL CANCER IN FAMILIAL ADENOMATOUS POLYPOSIS , 1988, The Lancet.

[204]  H. Aberle,et al.  Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor , 1994, The Journal of cell biology.

[205]  J. Boonstra,et al.  The EGF receptor is an actin-binding protein , 1992, The Journal of cell biology.

[206]  Frank McCormick,et al.  β-Catenin regulates expression of cyclin D1 in colon carcinoma cells , 1999, Nature.

[207]  T. Pollard,et al.  Wild-type but not mutant APC associates with the microtubule cytoskeleton. , 1994, Cancer research.

[208]  J M Lalouel,et al.  Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. , 1990, The New England journal of medicine.

[209]  R. Scott,et al.  Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3' APC gene mutation. , 1996, Human molecular genetics.

[210]  A. Kikuchi,et al.  Roles of Axin in the Wnt signalling pathway. , 1999, Cellular signalling.

[211]  D. Morton,et al.  Molecular analysis of the APC gene in 205 families: extended genotype-phenotype correlations in FAP and evidence for the role of APC amino acid changes in colorectal cancer predisposition , 1999, Journal of medical genetics.

[212]  P Rozen,et al.  Prevalence of the I1307K APC gene variant in Israeli Jews of differing ethnic origin and risk for colorectal cancer. , 1999, Gastroenterology.

[213]  Y. Nakamura,et al.  Correlation between the location of germ-line mutations in the APC gene and the number of colorectal polyps in familial adenomatous polyposis patients. , 1992, Cancer research.

[214]  F. Masiarz,et al.  Association of the APC gene product with beta-catenin. , 1993, Science.

[215]  C. Kaufmann,et al.  Domains of Axin Involved in Protein–Protein Interactions, Wnt Pathway Inhibition, and Intracellular Localization , 1999, The Journal of cell biology.

[216]  A. G. de Herreros,et al.  Regulation of E-cadherin/Catenin Association by Tyrosine Phosphorylation* , 1999, The Journal of Biological Chemistry.