A sinusoidal differential evolution algorithm for numerical optimisation

Graphical abstractDisplay Omitted HighlightsThe proposed SinDE uses sine-based formulas to define the DE parameter values.The proposed SinDE outperformed state-of the-art metaheuristics.28 benchmark functions have been used for validating the proposed approach.The proposed SinDE achieved very good results. It reduces the number of parameters. This paper presents a new variant of the Differential Evolution (DE) algorithm called Sinusoidal Differential Evolution (SinDE). The key idea of the proposed SinDE is the use of new sinusoidal formulas to automatically adjust the values of the DE main parameters: the scaling factor and the crossover rate. The objective of using the proposed sinusoidal formulas is the search for a good balance between the exploration of non visited regions of the search space and the exploitation of the already found good solutions. By applying it on the recently proposed CEC-2013 set of benchmark functions, the proposed approach is statistically compared with the classical DE, the linearly parameter adjusting DE and 10 other state-of-the-art metaheuristics. The obtained results have proven the superiority of the proposed SinDE, it outperformed other approaches especially for multimodal and composition functions.

[1]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[2]  Athanasios V. Vasilakos,et al.  Teaching and learning best Differential Evoltuion with self adaptation for real parameter optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[3]  Piero P. Bonissone,et al.  Fuzzy Logic Controlled Multi-Objective Differential Evolution , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[4]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[6]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[7]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[8]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[9]  Wei Luo,et al.  Adaptive direction information in differential evolution for numerical optimization , 2016, Soft Comput..

[10]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[11]  J. Lampinen A constraint handling approach for the differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[12]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[13]  Gexiang Zhang,et al.  Super-fit Multicriteria Adaptive Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[14]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[15]  Josef Tvrdík,et al.  Competitive differential evolution applied to CEC 2013 problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[16]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  Ilpo Poikolainen,et al.  Differential Evolution with Concurrent Fitness Based Local Search , 2013, 2013 IEEE Congress on Evolutionary Computation.

[18]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[19]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[21]  Giovanni Iacca,et al.  Multi-Strategy coevolving aging Particle Optimization , 2014, Int. J. Neural Syst..

[22]  Danushka Bollegala,et al.  An adaptive differential evolution algorithm , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[23]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Constantinos S. Hilas,et al.  A comparative study of common and self-adaptive differential evolution strategies on numerical benchmark problems , 2011, WCIT.

[25]  M. Janga Reddy,et al.  Multiobjective Differential Evolution with Application to Reservoir System Optimization , 2007 .

[26]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[27]  Giovanni Iacca,et al.  A CMA-ES super-fit scheme for the re-sampled inheritance search , 2013, 2013 IEEE Congress on Evolutionary Computation.

[28]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[29]  Athanasios V. Vasilakos,et al.  Improved CMA-ES with Memory based Directed Individual Generation for Real Parameter Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[30]  Chi-Keong Goh,et al.  Computational Intelligence in Optimization: Applications and Implementations , 2010 .

[31]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[32]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[33]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[34]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[35]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[36]  Janez Brest,et al.  Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[37]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[38]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[39]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[40]  C. S. Chang,et al.  Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system , 2000 .

[41]  Ville Tirronen,et al.  Differential Evolution with Fitness Diversity Self-adaptation , 2009, Nature-Inspired Algorithms for Optimisation.

[42]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[43]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Francisco Herrera,et al.  A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..