Redistribution of Intracellular Oxygen in Hypoxia by Nitric Oxide: Effect on HIF1α

Cells exposed to low oxygen concentrations respond by initiating defense mechanisms, including the stabilization of hypoxia-inducible factor (HIF) 1α, a transcription factor that upregulates genes such as those involved in glycolysis and angiogenesis. Nitric oxide and other inhibitors of mitochondrial respiration prevent the stabilization of HIF1α during hypoxia. In studies of cultured cells, we show that this effect is a result of an increase in prolyl hydroxylase–dependent degradation of HIF1α. With the use of Renilla luciferase to detect intracellular oxygen concentrations, we also demonstrate that, upon inhibition of mitochondrial respiration in hypoxia, oxygen is redistributed toward nonrespiratory oxygen-dependent targets such as prolyl hydroxylases so that they do not register hypoxia. Thus, the signaling consequences of hypoxia may be profoundly modified by nitric oxide.

[1]  Erich Gnaiger,et al.  Mitochondrial respiration at low levels of oxygen and cytochrome c. , 2001, Biochemical Society transactions.

[2]  G. Semenza Expression of hypoxia-inducible factor 1: mechanisms and consequences. , 2000, Biochemical pharmacology.

[3]  J. Marks,et al.  Mitochondrial Reactive Oxygen Species Trigger Calcium Increases During Hypoxia in Pulmonary Arterial Myocytes , 2002, Circulation research.

[4]  N. Chandel,et al.  Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia , 2000, The Journal of Biological Chemistry.

[5]  L. Huang,et al.  Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway , 1998 .

[6]  R. Wenger,et al.  Cellular adaptation to hypoxia: O2‐sensing protein hydroxylases, hypoxia‐inducible transcription factors, and O2‐regulated gene expression , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[8]  M. Nagao,et al.  Activation of Hypoxia-inducible Factor-1; Definition of Regulatory Domains within the α Subunit* , 1997, The Journal of Biological Chemistry.

[9]  W. Kaelin,et al.  HIF hydroxylation and the mammalian oxygen-sensing pathway. , 2003, The Journal of clinical investigation.

[10]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[11]  W. Jelkmann,et al.  Role of hydrogen peroxide in hypoxia-induced erythropoietin production. , 1994, The Biochemical journal.

[12]  J. Poderoso,et al.  Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. , 1996, Archives of biochemistry and biophysics.

[13]  Jorge D. Erusalimsky,et al.  Does nitric oxide modulate mitochondrial energy generation and apoptosis? , 2002, Nature Reviews Molecular Cell Biology.

[14]  S. Moncada,et al.  Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways. , 2003, The Biochemical journal.

[15]  J. Caro,et al.  Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. , 1997, The Journal of biological chemistry.

[16]  N. Chandel,et al.  Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Lehninger,et al.  Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. , 1985, Archives of biochemistry and biophysics.

[18]  D. Livingston,et al.  Activation of Hypoxia-inducible Transcription Factor Depends Primarily upon Redox-sensitive Stabilization of Its α Subunit* , 1996, The Journal of Biological Chemistry.

[19]  Charles L. Hoppel,et al.  Production of Reactive Oxygen Species by Mitochondria , 2003, Journal of Biological Chemistry.

[20]  K. Kivirikko,et al.  Characterization of the Human Prolyl 4-Hydroxylases That Modify the Hypoxia-inducible Factor* , 2003, Journal of Biological Chemistry.

[21]  B. Trimmer,et al.  Nitric Oxide and the Control of Firefly Flashing , 2001, Science.

[22]  P. Ratcliffe,et al.  Regulation of angiogenesis by hypoxia: role of the HIF system , 2003, Nature Medicine.