Empirical Temperature- and Extinction-dependent Extinction Coefficients for the GALEX, Pan-STARRS 1, Gaia, SDSS, 2MASS, and WISE Passbands

We have obtained accurate dust reddening from the far-ultraviolet to the mid-infrared for up to 5 million stars by the star-pair algorithm based on LAMOST stellar parameters along with Galaxy Evolution Explorer, Pan-STARRS 1, Gaia, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometric data. The typical errors are between 0.01 and 0.03 mag for most colors. We derived the empirical reddening coefficients for 21 colors both in the traditional (single-valued) way and as a function of T eff and E(B − V) by using the largest samples of accurate reddening measurements, together with the extinction values from Schlegel et al. The corresponding extinction coefficients have also been obtained. The results are compared with model predictions and generally in good agreement. Comparisons with measurements in the literature show that the T eff- and E(B − V)-dependent coefficients explain the discrepancies between different measurements naturally, i.e., using sample stars of different temperatures and reddening. Our coefficients are mostly valid in the extinction range of 0–0.5 mag and the temperature range of 4000–10,000 K. We recommend that the new T eff- and E(B − V)-dependent reddening and extinction coefficients should be used in the future. A Python package is also provided for the usage of the coefficients (https://github.com/vnohhf/extinction_coeffcient/).

[1]  Haibo Yuan,et al.  Validations and Corrections of the SFD and Planck Reddening Maps Based on LAMOST and Gaia Data , 2022, The Astrophysical Journal Supplement Series.

[2]  Haibo Yuan,et al.  Validation and Improvement of the Pan-STARRS Photometric Calibration with the Stellar Color Regression Method , 2022, The Astronomical Journal.

[3]  Haibo Yuan,et al.  Photometric Recalibration of the SDSS Stripe 82 to a Few Millimagnitude Precision with the Stellar Color Regression Method and Gaia EDR3 , 2021, The Astrophysical Journal Supplement Series.

[4]  T. Beers,et al.  Stellar Loci. V. Photometric Metallicities of 27 Million FGK Stars Based on Gaia Early Data Release 3 , 2021, The Astrophysical Journal Supplement Series.

[5]  H. Rix,et al.  Stellar labels for hot stars from low-resolution spectra. I. The HotPayne method and results for 330,000 stars from LAMOST DR6 , 2021, Astronomy & Astrophysics.

[6]  R. Kotak,et al.  Gaia Early Data Release 3 , 2021, Astronomy & Astrophysics.

[7]  Jifeng Liu,et al.  Correction to the Photometric Colors of Gaia Early Data Release 3 , 2021, The Astrophysical Journal Letters.

[8]  Jifeng Liu,et al.  Correction to the Photometric Colors of the Gaia Data Release 2 with the Stellar Color Regression Method , 2021, The Astrophysical Journal.

[9]  Haibo Yuan,et al.  Correction to the Photometric Magnitudes of the Gaia Early Data Release 3 , 2021, The Astrophysical Journal Letters.

[10]  P. J. Richards,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[11]  D. Finkbeiner,et al.  A 3D Dust Map Based on Gaia, Pan-STARRS 1, and 2MASS , 2019, The Astrophysical Journal.

[12]  Shu Wang,et al.  The Optical to Mid-infrared Extinction Law Based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys , 2019, The Astrophysical Journal.

[13]  J. Bobin,et al.  Determining thermal dust emission from Planck HFI data using a sparse, parametric technique , 2019, Astronomy & Astrophysics.

[14]  Y. Huang,et al.  Three-dimensional interstellar dust reddening maps of the Galactic plane , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[16]  Yuan-Sen Ting,et al.  The Payne: Self-consistent ab initio Fitting of Stellar Spectra , 2018, The Astrophysical Journal.

[17]  Bingqiu Chen,et al.  Three-dimensional structure of the milky way dust: modeling of LAMOST data , 2018, 1803.10540.

[18]  P. Sartoretti,et al.  The empirical Gaia G-band extinction coefficient , 2018, Astronomy & Astrophysics.

[19]  B. Yanny,et al.  Forward Global Photometric Calibration of the Dark Energy Survey , 2017, 1706.01542.

[20]  Scott W. Fleming,et al.  A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions , 2017, 1704.00653.

[21]  J. Peek,et al.  Mapping the Extinction Curve in 3D: Structure on Kiloparsec Scales , 2016, 1612.02818.

[22]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[23]  Xu Zhou,et al.  The first data release (DR1) of the LAMOST regular survey , 2015 .

[24]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[25]  J. Magorrian,et al.  Marginal likelihoods of distances and extinctions to stars: computation and compact representation , 2014, 1411.5024.

[26]  Ž. Ivezić,et al.  The SDSS–2MASS–WISE 10-dimensional stellar colour locus , 2014, 1403.1875.

[27]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[28]  Haibo Yuan,et al.  Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands , 2013, 1301.1427.

[29]  Xiaotong Feng,et al.  The Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) Quasar Survey: The Fourth and Fifth Data Releases , 2018, The Astrophysical Journal Supplement Series.

[30]  Yong-Heng Zhao,et al.  LAMOST spectral survey — An overview , 2012 .

[31]  Yanchun Liang,et al.  Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST) , 2011, 1105.2681.

[32]  C. Fabricius,et al.  Gaia broad band photometry , 2010, 1008.0815.

[33]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[34]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[35]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[36]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[37]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[38]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[39]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[40]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[41]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[42]  Nicholas A. Walton,et al.  Setting the scene for Gaia and LAMOST , 2014 .