Pattern matching: overview, benchmark and comparison with F-transform general matching algorithm

The goal of this paper is to introduce a pattern matching problem and specify its role in the context of similar disciplines such as pattern recognition, content-based object retrieval and semantic object retrieval. Historical development of the disciplines together with a taxonomy is given and a short overview of currently used methods for pattern matching is presented. Moreover, a general soft computing algorithm for pattern matching based on fuzzy transform is proposed together with its version working over graphic cards. Finally, a comparison of the presented methods with respect to their possibilities of usage and computational time is given and graphically illustrated.

[1]  Alan R. Jones,et al.  Fast Fourier Transform , 1970, SIGP.

[2]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[3]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[4]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[5]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[7]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[8]  Amihood Amir Multidimensional Pattern Matching: A Survey , 1992 .

[9]  Remco C. Veltkamp,et al.  A Survey of Content-Based Image Retrieval Systems , 2002 .

[10]  Richard M. Karp,et al.  Efficient Randomized Pattern-Matching Algorithms , 1987, IBM J. Res. Dev..

[11]  Wang Wei,et al.  Image Matching for Geomorphic Measurement Based on SIFT and RANSAC Methods , 2008, 2008 International Conference on Computer Science and Software Engineering.

[12]  Chun-Yuan Lin,et al.  Efficient Parallel Knuth-Morris-Pratt Algorithm for Multi-GPUs with CUDA , 2013 .

[13]  Cordelia Schmid,et al.  Combining efficient object localization and image classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[14]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[15]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[16]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[17]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[18]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[19]  Alfred V. Aho,et al.  Efficient string matching , 1975, Commun. ACM.

[20]  Ramarathnam Venkatesan,et al.  A Perceptual Audio Hashing Algorithm: A Tool for Robust Audio Identification and Information Hiding , 2001, Information Hiding.

[21]  Esko Ukkonen,et al.  Algorithms for Approximate String Matching , 1985, Inf. Control..

[22]  Ram Rajagopal,et al.  Pattern matching based on a generalized Fourier transform , 2000, SPIE Optics + Photonics.

[23]  K. Davis,et al.  Automatic Recognition of Spoken Digits , 1952 .

[24]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[25]  M. O. Ahmad,et al.  Fast computation of the discrete Walsh and Hadamard transforms , 1998, IEEE Trans. Image Process..

[26]  Petr Hurtík,et al.  Approximate Pattern Matching Algorithm , 2016, IPMU.

[27]  Remco C. Veltkamp,et al.  Content-based image retrieval systems: A survey , 2000 .

[28]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[29]  Charles R. Blair,et al.  A Program for Correcting Spelling Errors , 1960, Inf. Control..

[30]  Yacov Hel-Or,et al.  Real-time pattern matching using projection kernels , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  R.S. Bird,et al.  Two Dimensional Pattern Matching , 1977, Inf. Process. Lett..

[32]  Guojun Lu,et al.  Evaluation of similarity measurement for image retrieval , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[33]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[34]  D. Thesis,et al.  FUZZY TRANSFORM AND ITS APPLICATIONS TO PROBLEMS IN ENGINEERING PRACTICE , 2007 .

[35]  Alberto Apostolico,et al.  The Myriad Virtues of Subword Trees , 1985 .

[36]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2015, CVPR.

[37]  Dongwon Lee,et al.  BASIL: Effective Near-Duplicate Image Detection Using Gene Sequence Alignment , 2010, ECIR.

[38]  Maninder Singh,et al.  CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU , 2015 .

[39]  Petr Hurtík,et al.  Fast String Searching Mechanism , 2015, IFSA-EUSFLAT.

[40]  Robert S. Boyer,et al.  A fast string searching algorithm , 1977, CACM.

[41]  Irina Perfilieva,et al.  Fuzzy transforms: Theory and applications , 2006, Fuzzy Sets Syst..

[42]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[43]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[44]  Ramesh C. Jain,et al.  A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video , 2002, Pattern Recognit..