Controlled synchronisation of continuous PWA systems

A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

[1]  J. Suykens,et al.  Absolute stability theory and master-slave synchronization , 1997 .

[2]  T. Sugie,et al.  Trajectory Tracking Control of Bimodal Piecewise Affine Systems , 2004 .

[3]  Yi Zhao,et al.  Revision and improvement of a Theorem for robust synchronization of nonidentical Lur'e systems , 2005, IEEE Trans. Circuits Syst. II Express Briefs.

[4]  S. Monaco,et al.  Asymptotic properties of incrementally stable systems , 1996, IEEE Trans. Autom. Control..

[5]  Parlitz,et al.  Phase synchronization of coupled ginzburg-landau equations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Panos J. Antsaklis,et al.  Stabilization of second-order LTI switched systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[7]  Henk Nijmeijer,et al.  Application of partial observability for analysis and design of synchronized systems. , 2003, Chaos.

[8]  Alexey Pavlov,et al.  The output regulation problem : a convergent dynamics approach , 2004 .

[9]  J. How,et al.  Observer-based control of piecewise-affine systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[10]  J. Suykens,et al.  Master-slave synchronization using dynamic output feedback , 1997 .

[11]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[13]  Henk Nijmeijer,et al.  Partial Observers and Partial Synchronization , 2003, Int. J. Bifurc. Chaos.

[14]  Henk Nijmeijer,et al.  An observer looks at synchronisation , 1996 .

[15]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[16]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[17]  Henk Nijmeijer,et al.  Mutual synchronization of robots via estimated state feedback: a cooperative approach , 2004, IEEE Transactions on Control Systems Technology.

[18]  Mikael Johansson,et al.  Piecewise linear control systems - a computational approach , 2002, Lecture notes in control and information sciences.

[19]  N. Wouw,et al.  Convergent systems : analysis and synthesis , 2005 .

[20]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[21]  H Henk Nijmeijer,et al.  Synchronization of Mechanical Systems , 2003 .

[22]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[23]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[24]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[25]  Alexander Yu. Pogromsky,et al.  OBSERVER-BASED ROBUST SYNCHRONIZATION OF DYNAMICAL SYSTEMS , 1998 .

[26]  G. Scorletti,et al.  Nonlinear performance of a PI controlled missile: an explanation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[27]  A. Juloski,et al.  Observer design for a class of piece-wise affine systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[28]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[29]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[30]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[31]  J. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems , 1997 .

[32]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[33]  Petar V. Kokotovic,et al.  Observer-based control of systems with slope-restricted nonlinearities , 2001, IEEE Trans. Autom. Control..

[34]  H Henk Nijmeijer,et al.  Regulation and controlled synchronization for complex dynamical systems , 2000 .

[35]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[36]  G. Feng Controller design and analysis of uncertain piecewise-linear systems , 2002 .

[37]  U. Parlitz,et al.  Synchronization of chaotic systems , 1999, 1999 European Control Conference (ECC).

[38]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[39]  H. Nijmeijer,et al.  Convergent piecewise affine systems: analysis and design Part II: discontinuous case , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[40]  Michael Rosenblum,et al.  Synchronization and chaotization in interacting dynamical systems , 1995 .