Potential functions and the inefficiency of equilibria

We survey one area of the emerging field of algorithmic game theory: the use of approximation measures to quantify the inefficiency of game-theoretic equilibria. Potential functions, which enable the application of optimization theory to the study of equilibria, have been a versatile and powerful tool in this area. We use potential functions to bound the inefficiency of equilibria in three diverse, natural classes of games: selfish routing networks, resource allocation games, and Shapley network design games.

[1]  A. C. Pigou Economics of welfare , 1920 .

[2]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[4]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[5]  Robert W. Rosenthal,et al.  The network equilibrium problem in integers , 1973, Networks.

[6]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[9]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[10]  Pradeep Dubey,et al.  Inefficiency of Nash Equilibria , 1986, Math. Oper. Res..

[11]  F. Kelly Network routing , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  L. Shapley,et al.  Potential Games , 1994 .

[13]  Eric J. Friedman,et al.  Learning and Implementation on the Internet , 1997 .

[14]  Frank Kelly,et al.  Charging and rate control for elastic traffic , 1997, Eur. Trans. Telecommun..

[15]  Christos H. Papadimitriou,et al.  Worst-case Equilibria , 1999, STACS.

[16]  Tim Roughgarden,et al.  How bad is selfish routing? , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.

[18]  Tim Roughgarden,et al.  The price of anarchy is independent of the network topology , 2002, STOC '02.

[19]  Anna R. Karlin,et al.  Optimization in the private value model: competitive analysis applied to auction design , 2003 .

[20]  Bruce Hajek,et al.  Do Greedy Autonomous Systems Make for a Sensible Internet , 2003 .

[21]  Éva Tardos,et al.  Near-optimal network design with selfish agents , 2003, STOC '03.

[22]  José R. Correa,et al.  Sloan School of Management Working Paper 4319-03 June 2003 Selfish Routing in Capacitated Networks , 2022 .

[23]  Ramesh Johari,et al.  Efficiency loss in market mechanisms for resource allocation , 2004 .

[24]  Kamal Jain,et al.  A Polynomial Time Algorithm for Computing the Arrow-Debreu Market Equilibrium for Linear Utilities , 2004, FOCS.

[25]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[26]  Paul G. Spirakis,et al.  Selfish unsplittable flows , 2005, Theor. Comput. Sci..

[27]  Tim Roughgarden,et al.  The price of stability for network design with fair cost allocation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[28]  Kamal Jain,et al.  A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[29]  José R. Correa,et al.  On the Inefficiency of Equilibria in Congestion Games , 2005, IPCO.

[30]  Yossi Azar,et al.  The Price of Routing Unsplittable Flow , 2005, STOC '05.

[31]  Tim Roughgarden,et al.  Selfish routing and the price of anarchy , 2005 .

[32]  John N. Tsitsiklis,et al.  Efficiency loss in a network resource allocation game: the case of elastic supply , 2004, IEEE Transactions on Automatic Control.

[33]  A. Banerjee Convex Analysis and Optimization , 2006 .

[34]  Tim Roughgarden,et al.  Network Design with Weighted Players , 2006, SPAA '06.

[35]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..