Landauer's principle and the conservation of information

Abstract Erasure of information requires the dissipation of a minimal amount of energy as being formulated in Landauer's principle. This profound concept in information processing has recently been derived by use of basic dynamical principles of statistical mechanics. We present an alternative derivation of Landauer's principle based on dynamical principles and certain properties of the Shannon–Gibbs–Boltzmann entropy, in particular, (sub-)additivity.

[1]  G. A. Raggio Properties of q‐entropies , 1995 .

[2]  B. Frieden Physics from Fisher information , 1998 .

[3]  Colin P. Williams Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.

[4]  A Daffertshofer,et al.  Classical no-cloning theorem. , 2002, Physical review letters.

[5]  Michael C. Parker,et al.  Information transfer and Landauer’s principle , 2004 .

[6]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[7]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[8]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[9]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[10]  A. Wehrl General properties of entropy , 1978 .

[11]  S. Popescu,et al.  Classical analog of entanglement , 2001, quant-ph/0107082.

[12]  R. Landauer Information is physical , 1991 .

[13]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[14]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[15]  A E Allahverdyan,et al.  Breakdown of the Landauer bound for information erasure in the quantum regime. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[17]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[20]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[21]  Hans Christian,et al.  Information: The New Language of Science , 2003 .

[22]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .