Landauer's principle and the conservation of information
暂无分享,去创建一个
[1] G. A. Raggio. Properties of q‐entropies , 1995 .
[2] B. Frieden. Physics from Fisher information , 1998 .
[3] Colin P. Williams. Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.
[4] A Daffertshofer,et al. Classical no-cloning theorem. , 2002, Physical review letters.
[5] Michael C. Parker,et al. Information transfer and Landauer’s principle , 2004 .
[6] Hoi-Kwong Lo,et al. Introduction to Quantum Computation Information , 2002 .
[7] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[8] D. Bouwmeester,et al. The Physics of Quantum Information , 2000 .
[9] Andrew F. Rex,et al. Maxwell's Demon, Entropy, Information, Computing , 1990 .
[10] A. Wehrl. General properties of entropy , 1978 .
[11] S. Popescu,et al. Classical analog of entanglement , 2001, quant-ph/0107082.
[12] R. Landauer. Information is physical , 1991 .
[13] M. B. Plenio,et al. The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.
[14] Charles H. Bennett,et al. The thermodynamics of computation—a review , 1982 .
[15] A E Allahverdyan,et al. Breakdown of the Landauer bound for information erasure in the quantum regime. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] J. Gibbs. Elementary Principles in Statistical Mechanics , 1902 .
[17] Howard E. Brandt,et al. Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .
[18] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[19] Claude E. Shannon,et al. A mathematical theory of communication , 1948, MOCO.
[20] Charles H. Bennett,et al. Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.
[21] Hans Christian,et al. Information: The New Language of Science , 2003 .
[22] W. H. Zurek. Complexity, Entropy and the Physics of Information , 1990 .