A Bioinspired Surface with Synergistic Effect of Anisotropy and Gradient Microstructures for Controllable Fluid Transportation

[1]  J. Duan,et al.  Wetting Ridge‐Guided Directional Water Self‐Transport , 2022, Advanced science.

[2]  Qing Li,et al.  High-Performance Photonic Crystal Films for Thermal Management and Wound Healing , 2022, ACS Applied Polymer Materials.

[3]  J. Duan,et al.  Solar-driven thermal-wind synergistic effect on laser-textured superhydrophilic copper foam architectures for ultrahigh efficient vapor generation , 2021 .

[4]  Longjian Xue,et al.  Reversible Structure Engineering of Bioinspired Anisotropic Surface for Droplet Recognition and Transportation , 2020, Advanced science.

[5]  L. Ren,et al.  Non-wet kingfisher flying in the rain: The water-repellent mechanism of elastic feathers. , 2019, Journal of colloid and interface science.

[6]  A. Bagheri,et al.  Photopolymerization in 3D Printing , 2019, ACS Applied Polymer Materials.

[7]  Chengchun Zhang,et al.  Effect of Feather Elasticity of Kingfisher Wing on Droplet Impact Dynamics , 2018, Journal of Bionic Engineering.

[8]  Jing Feng,et al.  Wearable Superhydrophobic Elastomer Skin with Switchable Wettability , 2018 .

[9]  L. Ren,et al.  Reed Leaf-Inspired Graphene Films with Anisotropic Superhydrophobicity. , 2018, ACS applied materials & interfaces.

[10]  Yi Du,et al.  Superhydrophobic Shape Memory Polymer Arrays with Switchable Isotropic/Anisotropic Wetting , 2018 .

[11]  M. Kavalenka,et al.  Adaptable bioinspired special wetting surface for multifunctional oil/water separation , 2017, Scientific Reports.

[12]  Bai Yang,et al.  Ordered Micro/Nanostructures with Geometric Gradient: From Integrated Wettability "Library" to Anisotropic Wetting Surface. , 2017, Small.

[13]  Lei Jiang,et al.  Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. , 2015, Chemical reviews.

[14]  Yongliang Ni,et al.  Chromogenic Photonic Crystals Enabled by Novel Vapor‐Responsive Shape‐Memory Polymers , 2015, Advanced materials.

[15]  Lei Jiang,et al.  Bioinspired multiscale surfaces with special wettability , 2013 .

[16]  Juan Li,et al.  Anisotropic liquid penetration arising from a cross-sectional wettability gradient , 2012 .

[17]  Lei Jiang,et al.  A multi-structural and multi-functional integrated fog collection system in cactus , 2012, Nature Communications.

[18]  Hong-Bo Sun,et al.  Three‐Level Biomimetic Rice‐Leaf Surfaces with Controllable Anisotropic Sliding , 2011 .

[19]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[20]  Bai Yang,et al.  Elliptical silicon arrays with anisotropic optical and wetting properties. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[21]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[22]  Alessandro Mosco Micromorfología y anatomía de las espinas de Turbinicarpus (Cactaceae) , 2009 .

[23]  D. Ting,et al.  The effects of axis ratio on laminar fluid flow around an elliptical cylinder , 2007 .

[24]  Michael Nosonovsky,et al.  Multiscale roughness and stability of superhydrophobic biomimetic interfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  M. Donoghue,et al.  Pereskia and the Origin of the Cactus Life‐Form , 2006, The American Naturalist.

[26]  Lei Jiang,et al.  Bioinspired surfaces with special wettability. , 2005, Accounts of chemical research.

[27]  Jin Zhai,et al.  Super‐Hydrophobic Surfaces: From Natural to Artificial , 2002 .

[28]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .