Optimal port-based teleportation
暂无分享,去创建一个
Michal Horodecki | Sergii Strelchuk | Marek Mozrzymas | Michal Studzi'nski | M. Horodecki | M. Mozrzymas | M. Studzi'nski | S. Strelchuk
[1] Wen-Chyuan Yueh. EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES , 2005 .
[2] Satoshi Ishizaka,et al. Asymptotic teleportation scheme as a universal programmable quantum processor. , 2008, Physical review letters.
[3] Satoshi Ishizaka,et al. Quantum teleportation scheme by selecting one of multiple output ports , 2009, 0901.2975.
[4] Michał Horodecki,et al. Port-based teleportation in arbitrary dimension , 2016, Scientific Reports.
[5] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[6] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[7] Structure and properties of the algebra of partially transposed permutation operators , 2013, 1308.2653.
[8] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[9] Peter Lancaster,et al. The theory of matrices , 1969 .
[10] Commutant structure ofU ⊗(n−1) ⊗U ∗ transformations , 2013 .
[11] Satoshi Ishizaka,et al. Some remarks on port-based teleportation , 2015, 1506.01555.
[12] M. Lewenstein,et al. Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.
[13] Samuel L. Braunstein,et al. Higher-dimensional performance of port-based teleportation , 2016, Scientific Reports.
[14] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[15] Salman Beigi,et al. Simplified instantaneous non-local quantum computation with applications to position-based cryptography , 2011, 1101.1065.
[16] M. Horodecki,et al. Commutant structuture of Ux...xUxU* transformations , 2013, 1305.6183.