Carbohydrate translocation in sugar beet petioles in relation to petiolar respiration and adenosine 5'-triphosphate.

Earlier studies have shown that the retarding effect of low petiolar temperatures on sucrose transport through sugar beet (Beta vulgaris L.) petioles is markedly time-dependent. Although the initial effect of chilling the petiole to near 0 C is severely inhibitory, translocation rates soon recover (usually within about 2 hours) to values at or near the control rate. In the present studies, selected metabolic parameters were measured simultaneously with translocation. No stoichiometric relationships among petiolar sucrose transport, petiolar respiration (CO(2) production), and calculated petiolar ATP turnover rates were evident. It appears that the major sources of energy input energizing carbohydrate transport in sieve tubes function mainly at either loading or unloading sites and not at the level of individual sieve-tube elements.