Ordered mesoporous tungsten carbide/carbon composites promoted Pt catalyst with high activity and stability for methanol electrooxidation

[1]  Yong Li,et al.  Tin oxide nanoparticle-modified commercial PtRu catalyst for methanol oxidation , 2013 .

[2]  Seongyop Lim,et al.  Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells , 2012 .

[3]  Shuqin Song,et al.  A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation , 2012 .

[4]  Shuqin Song,et al.  Nanopores array of ordered mesoporous carbons determine Pt's activity towards alcohol electrooxidation , 2011 .

[5]  Y. Sung,et al.  Effect of the amount of reducing agent on surface structures, electrochemical activity and stability of PtRu catalysts , 2011 .

[6]  Irene J. Hsu,et al.  Tungsten carbide modified high surface area carbon as fuel cell catalyst support , 2011 .

[7]  Shuqin Song,et al.  The effect of microwave operation parameters on the electrochemical performance of Pt/C catalysts , 2011 .

[8]  M. Soszko,et al.  Electrochemical characterization of the surface and methanol electrooxidation on PtRhPd ternary al , 2011 .

[9]  D. Akins,et al.  Effect of heat treatment on stability of gold particle modified carbon supported Pt-Ru anode catalysts for a direct methanol fuel cell , 2010 .

[10]  P. Shen,et al.  Preparation and performance of nanosized tungsten carbides for electrocatalysis , 2010 .

[11]  Shuqin Song,et al.  Effect of pore diameter of wormholelike mesoporous carbon supports on the activity of Pt nanoparticles towards hydrogen electrooxidation , 2010 .

[12]  D. Zhao,et al.  Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. , 2009, Small.

[13]  Jingguang G. Chen,et al.  Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts , 2009 .

[14]  Chang Ming Li,et al.  Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis , 2009 .

[15]  Alexey Serov,et al.  Review of non-platinum anode catalysts for DMFC and PEMFC application , 2009 .

[16]  A. Ponrouch,et al.  Enhanced stability and activity of PtRu nanotubes for methanol electrooxidation , 2009 .

[17]  P. Achard,et al.  Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses , 2009 .

[18]  D. Seung,et al.  Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes , 2008 .

[19]  T. Zhao,et al.  Stabilization of the platinum-ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold , 2008 .

[20]  Geping Yin,et al.  Investigation of the performance decay of anodic PtRu catalyst with working time of direct methanol fuel cells , 2008 .

[21]  S. Woo,et al.  CO tolerant Pt/WC methanol electro-oxidation catalyst , 2007 .

[22]  Héctor D. Abruña,et al.  Tungsten based electrocatalyst for fuel cell applications , 2007 .

[23]  Shuqin Song,et al.  Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction , 2007 .

[24]  Bing-Joe Hwang,et al.  Investigations of direct methanol fuel cell (DMFC) fading mechanisms , 2007 .

[25]  Jingguang G. Chen,et al.  A Combined Surface Science and Electrochemical Study of Tungsten Carbides as Anode Electrocatalysts , 2007 .

[26]  S. Campbell,et al.  Thermal and electrochemical stability of tungsten carbide catalyst supports , 2007 .

[27]  Hongda Du,et al.  Influences of Mesopore Size on Oxygen Reduction Reaction Catalysis of Pt/Carbon Aerogels , 2007 .

[28]  Ultrarapid Materials Processing: Synthesis of Tungsten Carbide on Subminute Timescales , 2007 .

[29]  Piotr Zelenay,et al.  A class of non-precious metal composite catalysts for fuel cells , 2006, Nature.

[30]  Qin Xin,et al.  Test on the degradation of direct methanol fuel cell , 2006 .

[31]  S. Narayanan,et al.  Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks , 2006 .

[32]  Dongyuan Zhao,et al.  Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. , 2005, Angewandte Chemie.

[33]  J. S. Lee,et al.  Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. , 2005, Angewandte Chemie.

[34]  Jingguang G. Chen,et al.  Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts , 2005 .

[35]  Akira Taguchi,et al.  Ordered mesoporous materials in catalysis , 2005 .

[36]  B. Yi,et al.  Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test , 2004 .

[37]  Jong-Ho Choi,et al.  Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell , 2004 .

[38]  Piotr Zelenay,et al.  Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode , 2004 .

[39]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[40]  James M. Fenton,et al.  Evaluation of Platinum‐Based Catalysts for Methanol Electro‐oxidation in Phosphoric Acid Electrolyte , 1997 .

[41]  C. J. Barnett,et al.  Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds , 1997 .

[42]  S. Bodoardo,et al.  Oxidation of hydrogen on WC at low temperature , 1997 .

[43]  M. Boudart,et al.  Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis , 1973, Science.