Bayesian Methods for Graphical Models with Limited Data

[1]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[2]  S. Nielsen The stochastic EM algorithm: estimation and asymptotic results , 2000 .

[3]  H. Zou,et al.  Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.

[4]  Trevor Hastie,et al.  Applications of the lasso and grouped lasso to the estimation of sparse graphical models , 2010 .

[5]  S. Clark,et al.  Profile: Agincourt Health and Socio-demographic Surveillance System , 2012, International journal of epidemiology.

[6]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  Hao Wang,et al.  Scaling It Up: Stochastic Search Structure Learning in Graphical Models , 2015, 1505.01687.

[9]  Hao Wang,et al.  Bayesian Graphical Lasso Models and Efficient Posterior Computation , 2012 .

[10]  Hemant Ishwaran,et al.  Consistency of spike and slab regression , 2011 .

[11]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[12]  Fei Liu,et al.  Bayesian Regularization via Graph Laplacian , 2014 .

[13]  P. Jha Reliable direct measurement of causes of death in low- and middle-income countries , 2014, BMC Medicine.

[14]  Rajendra Prasad,et al.  Population Health Metrics Research Consortium gold standard verbal autopsy validation study: design, implementation, and development of analysis datasets , 2011, Population health metrics.

[15]  Adrian Dobra,et al.  Computational Aspects Related to Inference in Gaussian Graphical Models With the G-Wishart Prior , 2011 .

[16]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[17]  Larry A. Wasserman,et al.  High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.

[18]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[19]  Veronika Ročková,et al.  Particle EM for Variable Selection , 2018, Journal of the American Statistical Association.

[20]  R. Nelsen An Introduction to Copulas , 1998 .

[21]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[22]  H. Zou,et al.  High dimensional semiparametric latent graphical model for mixed data , 2014, 1404.7236.

[23]  Abel Rodriguez,et al.  Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data , 2010, Journal of the American Statistical Association.

[24]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[25]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[26]  Peter D Hoff,et al.  SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA. , 2012, The annals of applied statistics.

[27]  Samuel J. Clark,et al.  Bayesian latent Gaussian graphical models for mixed data with marginal prior information , 2017 .

[28]  Abdolreza Mohammadi,et al.  BDgraph: An R Package for Bayesian Structure Learning in Graphical Models , 2015, Journal of Statistical Software.

[29]  Tao Wang,et al.  On joint estimation of Gaussian graphical models for spatial and temporal data , 2015, Biometrics.

[30]  J. Friedman,et al.  New Insights and Faster Computations for the Graphical Lasso , 2011 .

[31]  Jon Wakefield,et al.  Bayesian mixture modeling of gene‐environment and gene‐gene interactions , 2009, Genetic epidemiology.

[32]  Larry A. Wasserman,et al.  The huge Package for High-dimensional Undirected Graph Estimation in R , 2012, J. Mach. Learn. Res..

[33]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[34]  Peter Byass,et al.  A probabilistic approach to interpreting verbal autopsies: methodology and preliminary validation in Vietnam , 2003, Scandinavian journal of public health. Supplement.

[35]  Lin Zhang,et al.  Bayesian hierarchical structured variable selection methods with application to molecular inversion probe studies in breast cancer , 2014 .

[36]  Xiaofang Xu,et al.  Bayesian Variable Selection and Estimation for Group Lasso , 2015, 1512.01013.

[37]  Lawrence R. Carter,et al.  Modeling and Forecasting U.S. Mortality: Rejoinder , 1992 .

[38]  A. Roverato Hyper Inverse Wishart Distribution for Non-decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models , 2002 .

[39]  V. Rocková,et al.  Bayesian estimation of sparse signals with a continuous spike-and-slab prior , 2018 .

[40]  Basia Zaba,et al.  Profile: The Karonga Health and Demographic Surveillance System , 2012, International journal of epidemiology.

[41]  Maria De Iorio,et al.  Bayesian inference for multiple Gaussian graphical models with application to metabolic association networks , 2016, 1603.06358.

[42]  Sameer K. Deshpande,et al.  Simultaneous Variable and Covariance Selection With the Multivariate Spike-and-Slab LASSO , 2017, Journal of Computational and Graphical Statistics.

[43]  A. Dawid,et al.  Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .

[44]  Alexander Y. Shestopaloff,et al.  Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths , 2015, BMC Medicine.

[45]  Paul D. McNicholas,et al.  Variable Selection for Clustering and Classification , 2013, J. Classif..

[46]  Larry A. Wasserman,et al.  Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models , 2010, NIPS.

[47]  Trevor J. Hastie,et al.  Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso , 2011, J. Mach. Learn. Res..

[48]  Edwin R. van den Heuvel,et al.  Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models , 2015 .

[49]  Takumi Saegusa,et al.  Joint Estimation of Precision Matrices in Heterogeneous Populations. , 2016, Electronic journal of statistics.

[50]  M. Pitt,et al.  Efficient Bayesian inference for Gaussian copula regression models , 2006 .

[51]  P. Green,et al.  Decomposable graphical Gaussian model determination , 1999 .

[52]  Adrian Dobra,et al.  Modeling Uncertainty in Macroeconomic Growth Determinants Using Gaussian Graphical Models , 2008 .

[53]  Guang Cheng,et al.  Simultaneous Clustering and Estimation of Heterogeneous Graphical Models , 2016, J. Mach. Learn. Res..

[54]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[55]  Tyler H. McCormick,et al.  An Expectation Conditional Maximization Approach for Gaussian Graphical Models , 2017, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[56]  Adrian Dobra,et al.  A BAYESIAN GRAPHICAL MODEL FOR GENOME-WIDE ASSOCIATION STUDIES (GWAS). , 2016, The annals of applied statistics.

[57]  Rafael Lozano,et al.  Robust metrics for assessing the performance of different verbal autopsy cause assignment methods in validation studies , 2011, Population health metrics.

[58]  Jing Ma,et al.  Joint Structural Estimation of Multiple Graphical Models , 2016, J. Mach. Learn. Res..

[59]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[60]  Ying Lu,et al.  Verbal Autopsy Methods with Multiple Causes of Death , 2008, 0808.0645.

[61]  P. Byass,et al.  Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool. , 2012, Global health action.

[62]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[63]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[64]  A. Flaxman,et al.  The WHO 2016 verbal autopsy instrument: An international standard suitable for automated analysis by InterVA, InSilicoVA, and Tariff 2.0 , 2018, PLoS medicine.

[65]  E. Levina,et al.  Joint estimation of multiple graphical models. , 2011, Biometrika.

[66]  A. Doucet,et al.  Efficient Bayesian Inference for Multivariate Probit Models With Sparse Inverse Correlation Matrices , 2012 .

[67]  Jerome P. Reiter,et al.  Incorporating Marginal Prior Information in Latent Class Models , 2016 .

[68]  Michael A. West,et al.  Archival Version including Appendicies : Experiments in Stochastic Computation for High-Dimensional Graphical Models , 2005 .

[69]  Rajendra Prasad,et al.  A shortened verbal autopsy instrument for use in routine mortality surveillance systems , 2015, BMC Medicine.

[70]  C. Klaassen,et al.  Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .

[71]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[72]  Veronika Rockova,et al.  EMVS: The EM Approach to Bayesian Variable Selection , 2014 .

[73]  Richard Horton,et al.  Counting for health , 2007, The Lancet.

[74]  McEuen Je,et al.  Child and maternal health services in rural India: the Narangwal experiment. , 1983 .

[75]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[76]  George Casella,et al.  Implementations of the Monte Carlo EM Algorithm , 2001 .

[77]  Samuel J. Clark,et al.  Bayesian Joint Spike-and-Slab Graphical Lasso , 2018, ICML.

[78]  Ryan P. Adams,et al.  Elliptical slice sampling , 2009, AISTATS.

[79]  Veerabhadran Baladandayuthapani,et al.  Bayesian sparse graphical models and their mixtures , 2014, Stat.

[80]  M. Garenne Prospects for automated diagnosis of verbal autopsies , 2014, BMC Medicine.

[81]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[82]  Trevor J. Hastie,et al.  The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.

[83]  E. George,et al.  The Spike-and-Slab LASSO , 2018 .

[84]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[85]  T. McCormick,et al.  The openVA Toolkit for Verbal Autopsies , 2021, R J..

[86]  C. Carvalho,et al.  Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective , 2014, 1408.0464.

[87]  Hao Wang,et al.  Efficient Gaussian graphical model determination under G-Wishart prior distributions , 2012 .

[88]  J. S. Rao,et al.  Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection , 2003 .

[89]  A. Dobra Graphical Modeling of Spatial Health Data , 2014, 1411.6512.

[90]  A. Dobra,et al.  Copula Gaussian graphical models and their application to modeling functional disability data , 2011, 1108.1680.

[91]  Anindya Bhadra,et al.  The Graphical Horseshoe Estimator for Inverse Covariance Matrices , 2017, Journal of Computational and Graphical Statistics.

[92]  Christine B Peterson,et al.  Bayesian Inference of Multiple Gaussian Graphical Models , 2015, Journal of the American Statistical Association.

[93]  Jianqing Fan,et al.  NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES. , 2009, The annals of applied statistics.

[94]  Samuel J. Clark,et al.  Probabilistic Cause-of-Death Assignment Using Verbal Autopsies , 2014, Journal of the American Statistical Association.

[95]  Subhashis Ghosal,et al.  Bayesian structure learning in graphical models , 2013, J. Multivar. Anal..

[96]  Peter D. Hoff Extending the rank likelihood for semiparametric copula estimation , 2006, math/0610413.

[97]  É. Moulines,et al.  Convergence of a stochastic approximation version of the EM algorithm , 1999 .

[98]  Xiao-Li Meng,et al.  Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .

[99]  Yunqi Bu,et al.  Integrating additional knowledge into the estimation of graphical models , 2017, The international journal of biostatistics.

[100]  M. West,et al.  Shotgun Stochastic Search for “Large p” Regression , 2007 .

[101]  A. Mohammadi,et al.  Bayesian Structure Learning in Sparse Gaussian Graphical Models , 2012, 1210.5371.