Computer-aided detection of lung cancer: combining pulmonary nodule detection systems with a tumor risk prediction model

Computer-Aided Detection (CAD) has been shown to be a promising tool for automatic detection of pulmonary nodules from computed tomography (CT) images. However, the vast majority of detected nodules are benign and do not require any treatment. For effective implementation of lung cancer screening programs, accurate identification of malignant nodules is the key. We investigate strategies to improve the performance of a CAD system in detecting nodules with a high probability of being cancers. Two strategies were proposed: (1) combining CAD detections with a recently published lung cancer risk prediction model and (2) the combination of multiple CAD systems. First, CAD systems were used to detect the nodules. Each CAD system produces markers with a certain degree of suspicion. Next, the malignancy probability was automatically computed for each marker, given nodule characteristics measured by the CAD system. Last, CAD degree of suspicion and malignancy probability were combined using the product rule. We evaluated the method using 62 nodules which were proven to be malignant cancers, from 180 scans of the Danish Lung Cancer Screening Trial. The malignant nodules were considered as positive samples, while all other findings were considered negative. Using a product rule, the best proposed system achieved an improvement in sensitivity, compared to the best individual CAD system, from 41.9% to 72.6% at 2 false positives (FPs)/scan and from 56.5% to 88.7% at 8 FPs/scan. Our experiment shows that combining a nodule malignancy probability with multiple CAD systems can increase the performance of computerized detection of lung cancer.

[1]  M. Roizen Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening , 2012 .

[2]  Bram van Ginneken,et al.  Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images , 2014, Medical Image Anal..

[3]  Ricardo A. M. Valentim,et al.  Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects , 2014, BioMedical Engineering OnLine.

[4]  A. Dirksen,et al.  The Danish Randomized Lung Cancer CT Screening Trial—Overall Design and Results of the Prevalence Round , 2009, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[5]  A. Jemal,et al.  Annual Report to the Nation on the status of cancer, 1975‐2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer , 2014, Cancer.

[6]  Max A. Viergever,et al.  On Combining Computer-Aided Detection Systems , 2011, IEEE Transactions on Medical Imaging.

[7]  Richard C. Pais,et al.  The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. , 2011, Medical physics.

[8]  Bram van Ginneken,et al.  A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification , 2009, Medical Image Anal..

[9]  Bram van Ginneken,et al.  Automatic Segmentation of Pulmonary Segments From Volumetric Chest CT Scans , 2009, IEEE Transactions on Medical Imaging.

[10]  S. Lam,et al.  Probability of cancer in pulmonary nodules detected on first screening CT. , 2013, The New England journal of medicine.