Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method

Abstract Building an accurate mathematical model is vital for the simulation, control, evaluation, management, and optimization of proton exchange membrane fuel cells (PEMFCs). Usually this work is processed through building a mathematical model based on empirical or semi-empirical equations firstly and then estimating the unknown model parameters using optimization technologies. In this study, a simple two stage eagle strategy based on JAYA algorithm and Nelder-Mead simplex algorithm is proposed for effectively estimating the unknown model parameters of PEMFCs. In the proposed strategy, JAYA algorithm is employed for the coarse global exploration, and Nelder–Mead simplex search algorithm is employed for the intensive local search. The effectiveness of the proposed strategy is verified through estimation experiments with 7 and 9 unknown parameters. Compared with the basic JAYA algorithm and four other newly reported excellent meta-heuristic algorithms including Grey Wolf Optimizer, Grasshopper Optimization Algorithm, Salp Swarm Optimizer, and Multi-Verse Optimizer, the proposed strategy possesses better performance in terms of accuracy, convergence speed, and stability, thus it is a promising approach for parameter estimation of PEMFC.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[3]  Yuxin Zhao,et al.  Applications and analysis of bio-inspired eagle strategy for engineering optimization , 2013, Neural Computing and Applications.

[4]  Henry Shu-Hung Chung,et al.  A Prediction Model-Guided Jaya Algorithm for the PV System Maximum Power Point Tracking , 2018, IEEE Transactions on Sustainable Energy.

[5]  Attia A. El-Fergany,et al.  Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser , 2018 .

[6]  Ning Wang,et al.  Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell , 2013 .

[7]  A. T. de Almeida,et al.  A new parameter extraction method for accurate modeling of PEM fuel cells , 2009 .

[8]  Ralph E. White,et al.  A water and heat management model for proton-exchange-membrane fuel cells , 1993 .

[9]  Ning Wang,et al.  Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm , 2015 .

[10]  Werner Lehnert,et al.  Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals , 2017 .

[11]  R. V. Rao,et al.  Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm , 2017 .

[12]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[13]  Wenyin Gong,et al.  Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution , 2013 .

[14]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[15]  Cuimei Bo,et al.  Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm , 2016 .

[16]  Alireza Rezazadeh,et al.  A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer , 2013 .

[17]  Z. Abdin,et al.  PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters , 2016 .

[18]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[19]  Meiying Ye,et al.  Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization , 2009 .

[20]  Qi Li,et al.  Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization , 2011, IEEE Transactions on Industrial Electronics.

[21]  R. Venkata Rao,et al.  Optimisation of welding processes using quasi-oppositional-based Jaya algorithm , 2017, J. Exp. Theor. Artif. Intell..

[22]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[23]  Hassan Noura,et al.  The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization , 2015 .

[24]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[25]  Ning Wang,et al.  An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells , 2013 .

[26]  Tine Konjedic,et al.  Identification of a Proton-Exchange Membrane Fuel Cell’s Model Parameters by Means of an Evolution Strategy , 2015, IEEE Transactions on Industrial Informatics.

[27]  R. Rao Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems , 2016 .

[28]  Li Li,et al.  A hybrid Jaya algorithm for reliability–redundancy allocation problems , 2017 .

[29]  T. Nejat Veziroglu,et al.  21st Century's Energy: Hydrogen Energy System , 2008 .

[30]  Kumar Abhishek,et al.  Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA , 2017, Engineering with Computers.

[31]  Alireza Rezazadeh,et al.  A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell , 2011 .

[32]  Z. Geem,et al.  Parameter Estimation for a Proton Exchange Membrane Fuel Cell Model Using GRG Technique , 2016 .

[33]  Zhiqiang Gao,et al.  Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell , 2014 .

[34]  Uday K. Chakraborty,et al.  PEM fuel cell modeling using differential evolution , 2012 .

[35]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[36]  Leandro dos Santos Coelho,et al.  A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model , 2014 .

[37]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .

[38]  M. A. Elhameed,et al.  Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer , 2017 .

[39]  Xin-Jian Zhu,et al.  An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system , 2014 .

[40]  Xin-She Yang,et al.  Two-stage eagle strategy with differential evolution , 2012, Int. J. Bio Inspired Comput..

[41]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[42]  Ahmed Fathy,et al.  Multi-Verse Optimizer for Identifying the Optimal Parameters of PEMFC Model , 2018 .

[43]  Jan Taler,et al.  Dimensional optimization of a micro-channel heat sink using Jaya algorithm , 2016 .

[44]  Attia A. El-Fergany,et al.  Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer , 2018 .

[45]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[46]  Wenyin Gong,et al.  Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution , 2014, Eng. Appl. Artif. Intell..

[47]  R. Venkata Rao,et al.  Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm , 2017 .

[48]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[49]  Alireza Rezazadeh,et al.  Optimization of PEMFC model parameters with a modified particle swarm optimization , 2011 .

[50]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[51]  Oguz Emrah Turgut,et al.  Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – Differential Evolution algorithm , 2016 .