Neutron Capture Cross Section of 90Zr: Bottleneck in the s-Process Reaction Flow

The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus 90Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n, γ ) cross section has been measured at CERN, using the n TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n TOF. On average, the γ widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section for s-process calculations has been improved by more than a factor of 2.

A. Ferrari | S. Marrone | Y. Kadi | A. Herrera-Martínez | R. Haight | P. Vaz | N. Colonna | V. Vlachoudis | M. Lozano | R. Capote | C. Papadopoulos | D. Karamanis | C. Santos | M. Igashira | J. Andrzejewski | P. Cennini | C. Rubbia | A. Lindote | S. Lukić | M. Calviani | H. Wendler | M. Kerveno | A. Plompen | G. Rudolf | R. Reifarth | W. Furman | S. Andriamonje | C. Eleftheriadis | P. Pavlopoulos | C. Stephan | L. Tassan-got | L. Audouin | S. David | C. Domingo-Pardo | A. Couture | E. Chiaveri | L. Sarchiapone | E. Berthoumieux | F. Calviño | D. Cano-Ott | G. Cortes | I. Ďuran | E. González-Romero | C. Guerrero | F. Gunsing | T. Martinez | P. Mastinu | A. Mengoni | P. Milazzo | N. Patronis | A. Pavlík | J. Praena | J. Quesada | G. Tagliente | J. Taı́n | G. Vannini | R. Vlastou | C. Massimi | A. Ventura | M. Dahlfors | C. Paradela | H. Álvarez | L. Ferrant | U. Abbondanno | K. Fujii | G. Aerts | F. Álvarez-Velarde | E. Jericha | M. Krtička | H. Leeb | J. Marganiec | T. Rauscher | R. Plag | K. Wisshak | P. Assimakopoulos | G. Badurek | V. Chepel | M. Embid-Segura | R. Ferreira-Marques | F. Gramegna | M. Heil | P. Koehler | E. Kossionides | C. Moreau | H. Oberhummer | S. O'Brien | J. Pancin | L. Perrot | A. Plukis | A. Poch | C. Pretel | P. Rullhusen | J. Salgado | L. Tavora | R. Terlizzi | F. Voss | M. Wiescher | P. Baumann | J. Cox | I. Gonçalves | M. Mosconi | S. Bisterzo | C. Carrapiço | I. Dillman | W. Dridi | R. Gallino | B. Haas | F. Kaeppeler | D. Karadimos | C. Lamboudis | I. Lopes | F. Neves | C. Papachristodoulou | I. Savvidis | D. Villamarín | M. Vincente | S. Walter | F. Becvár | M. Pigni | S. Lukic | D. Villamarı́n | M. Krticka | A. Pavlik

[1]  Isabel S. Gonçalves,et al.  Neutron capture cross section of Th-232 measured at the n_TOF facility at CERN in the unresolved resonance region up to 1-MeV , 2006 .

[2]  Said F. Mughabghab,et al.  Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z=1-100 , 2006 .

[3]  C. Tout,et al.  Nucleosynthesis on the Asymptotic Giant Branch: A comparison between codes , 2005 .

[4]  J. M. Perlado,et al.  The data acquisition system of the neutron time-of-flight facility n_TOF at CERN , 2005 .

[5]  Yacine Kadi,et al.  Time-energy relation of the n_TOF neutron beam : energy standards revisited , 2004 .

[6]  J. M. Perlado,et al.  New experimental validation of the pulse height weighting technique for capture cross-section measurements , 2004 .

[7]  S. Marrone,et al.  A low background neutron flux monitor for the n_TOF facility at CERN , 2004 .

[8]  E. Radermacher,et al.  Results from the commissioning of the n_TOF spallation neutron source at CERN , 2003 .

[9]  Measurements of (n,γ) neutron capture cross-sections with liquid scintillator detectors , 2003 .

[10]  A. Davis,et al.  Isotopic Compositions of Strontium, Zirconium, Molybdenum, and Barium in Single Presolar SiC Grains and Asymptotic Giant Branch Stars , 2003 .

[11]  U Abbondanno,et al.  CERN n_TOF facility : Performance report , 2003 .

[12]  F. Käppeler,et al.  An optimized C6D6 detector for studies of resonance-dominated (n,γ) cross-sections , 2003 .

[13]  J. Lattanzio,et al.  s-Process Nucleosynthesis in Asymptotic Giant Branch Stars: A Test for Stellar Evolution , 2002, astro-ph/0212364.

[14]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[15]  F. Käppeler,et al.  NEUTRON CROSS SECTIONS FOR NUCLEOSYNTHESIS STUDIES , 2000 .

[16]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[17]  A. Chieffi,et al.  Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process , 1998 .

[18]  C. Raiteri,et al.  The Weak s-Component and Nucleosynthesis in Massive Stars , 1993 .

[19]  B. A. Brown,et al.  Nuclei in the Cosmos , 2009, 0902.3090.

[20]  F. Gasperini,et al.  The weighting function of a neutron capture detection system , 1991 .

[21]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[22]  S. Mughabghab Neutron Physics of Thermal Cross-Sections and Resonance Parameters , 1984 .

[23]  M. Divadeenam,et al.  Neutron resonance parameters and thermal cross sections , 1981 .

[24]  R. Macklin,et al.  Resonance neutron capture by /sup 209/Bi. [2. 6 to 901 keV; radiative widths] , 1976 .

[25]  B. Allen,et al.  Valence component in the neutron capture cross section of 90Zr , 1975 .

[26]  R. Toohey,et al.  Valence component in the threshold photoneutron spectrum of $sup 91$Zr , 1974 .

[27]  R. W. Hockenbury,et al.  NEUTRON RADIATIVE CAPTURE AND TRANSMISSION MEASUREMENTS OF W AND Zr ISOTOPES IN THE keV REGION. , 1969 .

[28]  W. Good,et al.  Neutron Total Cross Sections of Even Isotopes of Zr in the Energy Range 2-60 keV , 1968 .

[29]  S. S. Moskalev,et al.  Total neutron cross sections of Zr isotopes in the energy range up to 20 keV , 1964 .