Neutrino Oscillation Results and Search for Neutrino Sterile States

[1]  The Daya Bay Collaboration Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay , 2022, 2210.01068.

[2]  A. Falcone,et al.  Deep underground neutrino experiment: DUNE , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[3]  M. Gonchar,et al.  Neutrino oscillations: status and prospects for determination of neutrino mass ordering and leptonic CP-violation phase , 2022, Physics Uspekhi.

[4]  Zheng Wang,et al.  Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO , 2022, Chinese Physics C.

[5]  P. T. Surukuchi,et al.  White Paper on Light Sterile Neutrino Searches and Related Phenomenology , 2022, 2203.07323.

[6]  C. Argüelles,et al.  MicroBooNE and the ν_{e} Interpretation of the MiniBooNE Low-Energy Excess. , 2021, Physical review letters.

[7]  C. Giunti,et al.  Reactor antineutrino anomaly in light of recent flux model refinements , 2021, Physics Letters B.

[8]  D. A. Wickremasinghe,et al.  Improved measurement of neutrino oscillation parameters by the NOvA experiment , 2021, Physical Review D.

[9]  H.Branzacs,et al.  Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering , 2021, Journal of High Energy Physics.

[10]  A. Melchiorri,et al.  Unfinished fabric of the three neutrino paradigm , 2021, Physical Review D.

[11]  A. Burgman,et al.  Updated physics performance of the ESSnuSB experiment , 2021, The European Physical Journal C.

[12]  A. Olshevskiy,et al.  Status and Research Prospects of Three-Flavor Neutrino Oscillations , 2021, Physics of Particles and Nuclei.

[13]  L. S. Miranda,et al.  Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA , 2021, The European Physical Journal C.

[14]  M. Skorokhvatov,et al.  Reevaluating reactor antineutrino spectra with new measurements of the ratio between U235 and Pu239 β spectra , 2021, Physical Review D.

[15]  T. Yano,et al.  Sensitivity Study for Astrophysical Neutrinos at Hyper-Kamiokande , 2021 .

[16]  S. Ellis,et al.  Current and future neutrino oscillation constraints on leptonic unitarity , 2020, Journal of High Energy Physics.

[17]  P. Dunne Latest Neutrino Oscillation Results from T2K , 2020 .

[18]  Astronomy,et al.  Precision Constraints for Three-Flavor Neutrino Oscillations from the Full MINOS+ and MINOS Dataset. , 2020, Physical review letters.

[19]  J. I. Crespo-Anad'on,et al.  Long-baseline neutrino oscillation physics potential of the DUNE experiment , 2020, 2006.16043.

[20]  O. Mena,et al.  2020 global reassessment of the neutrino oscillation picture , 2020, Journal of High Energy Physics.

[21]  Y. Takeuchi,et al.  Recent results and future prospects of Super-Kamiokande , 2020 .

[22]  Yuriy Shitov New results from the DANSS experiment , 2019, Proceedings of XXIX International Symposium on Lepton Photon Interactions at High Energies — PoS(LeptonPhoton2019).

[23]  P. Backes,et al.  Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU , 2019, Physical Review D.

[24]  J. Beacom,et al.  DUNE as the Next-Generation Solar Neutrino Experiment. , 2018, Physical review letters.

[25]  A. Serebrov,et al.  The Experiment Neutrino-4 on the Search for Sterile Neutrino at SM-3 Reactor , 2017, Moscow University Physics Bulletin.

[26]  V. Vorobel Latest results from Daya Bay , 2017 .

[27]  J. P. Barron,et al.  Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore , 2017, 1707.07081.

[28]  G F Cao,et al.  Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.

[29]  F. S. Cafagna,et al.  Physics potentials with the second Hyper-Kamiokande detector in Korea , 2016, Progress of Theoretical and Experimental Physics.

[30]  R. Carr,et al.  New results from the Double Chooz experiment , 2016 .

[31]  Chang Wei Loh,et al.  New measurement of θ13 via neutron capture on hydrogen at Daya Bay , 2016, 1603.03549.

[32]  R. Mohapatra,et al.  Implications of μ-τ flavored CP symmetry of leptons , 2015, 1506.06788.

[33]  V. S. Subrahmanyam,et al.  Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) , 2015, 1505.07380.

[34]  A. Aurisano,et al.  Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos. , 2014, Physical review letters.

[35]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[36]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[37]  P. Huber Erratum: Determination of antineutrino spectra from nuclear reactors [Phys. Rev. C 84 , 024617 (2011)] , 2012 .

[38]  S. Elliott,et al.  Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory , 2011, 1109.0763.

[39]  J. C. Mitchell,et al.  Improved search for Muon-neutrino to electron-neutrino oscillations in MINOS. , 2011, Physical review letters.

[40]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[41]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[42]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[43]  S. Bilenky,et al.  Introduction to the Physics of Massive and Mixed Neutrinos , 2010 .

[44]  B C Brown,et al.  Unexplained excess of electronlike events from a 1-GeV neutrino beam. , 2008, Physical review letters.

[45]  Astronomy,et al.  Solar neutrino measurements , 2022 .

[46]  M. Lindner,et al.  Series expansions for three-flavor neutrino oscillation probabilities in matter , 2004, hep-ph/0402175.

[47]  D. H. White,et al.  Evidence for neutrino oscillations from the observation ofν¯eappearance in aν¯μbeam , 2001 .

[48]  S. Collaboration Measurement of the solar neutrino capture rate with gallium metal , 1999, astro-ph/9907113.

[49]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.

[50]  L. Gosset,et al.  GALLEX solar neutrino observations: Results for GALLEX IV , 1996 .

[51]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[52]  S. Petcov,et al.  Massive neutrinos and neutrino oscillations , 1987 .

[53]  B. Pontecorvo,et al.  Lepton mixing and neutrino oscillations , 1977 .

[54]  P. H. Heckmann Search for neutrinos from the Sun , 1973 .

[55]  B. Pontecorvo,et al.  Neutrino astronomy and lepton charge , 1969 .

[56]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .

[57]  B. Pontecorvo,et al.  Inverse beta processes and nonconservation of lepton charge , 1957 .

[58]  B. Pontecorvo,et al.  Mesonium and Antimesonium , 1957 .

[59]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[60]  S. Mikheyev,et al.  Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos , 1986 .

[61]  M. Decowski,et al.  UvA-DARE (Digital Academic Constraints on theta 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND , 2011 .