Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode.

Epitaxial growth of SrTiO₃ on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO₃. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO₃ films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180°. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO₃ films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.

[1]  I. P. Batra,et al.  Depolarization Field and Stability Considerations in Thin Ferroelectric Films , 1973 .

[2]  I. P. Batra,et al.  Phase Transition, Stability, and Depolarization Field in Ferroelectric Thin Films , 1973 .

[3]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[4]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[5]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[6]  U. Gösele,et al.  Polarization imprint and size effects in mesoscopic ferroelectric structures , 2001 .

[7]  A. Demkov,et al.  Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films , 2002 .

[8]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[9]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[10]  T. Yoshimura,et al.  Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors , 2003 .

[11]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[12]  J. S. Lee,et al.  Polarization relaxation induced by a depolarization field in ultrathin ferroelectric capacitors. , 2005, Physical review letters.

[13]  Alexie M. Kolpak,et al.  Ferroelectricity in ultrathin perovskite films , 2005 .

[14]  E. Sarigiannidou,et al.  Theoretical discussions on the geometrical phase analysis. , 2005, Ultramicroscopy.

[15]  Stephen Jesse,et al.  Quantitative mapping of switching behavior in piezoresponse force microscopy , 2006 .

[16]  A. Bratkovsky,et al.  Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films , 2006, cond-mat/0608283.

[17]  J. Woicik,et al.  c-axis oriented epitaxial BaTiO3 films on (001) Si , 2006 .

[18]  Ricardo Garcia,et al.  Nano-chemistry and scanning probe nanolithographies. , 2006, Chemical Society reviews.

[19]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[20]  A. Rappe,et al.  Erratum: Ferroelectricity in ultrathin perovskite films [Phys. Rev. B72, 020101(R) (2005)] , 2006 .

[21]  S. Jesse,et al.  A decade of piezoresponse force microscopy: progress, challenges, and opportunities , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[23]  Bruce W Wessels,et al.  Epitaxial growth and strain relaxation of BaTiO3 thin films on SrTiO3 buffered (001) Si by molecular beam epitaxy , 2007 .

[24]  Y. Kawazoe,et al.  Ferroelectric phase transitions in ultrathin films of BaTiO3. , 2007, Physical review letters.

[25]  Rainer Waser,et al.  Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. , 2007, Nature materials.

[26]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[27]  Marin Alexe,et al.  Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. , 2008, Nature materials.

[28]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[29]  R. Cavin,et al.  Nanoelectronics: negative capacitance to the rescue? , 2008, Nature nanotechnology.

[30]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[31]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[32]  A. Ionescu,et al.  Metal-Ferroelectric-Meta-Oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification , 2010, 2010 International Electron Devices Meeting.

[33]  C. Ahn,et al.  Crystalline Oxides on Silicon , 2010 .

[34]  S. Ismail-Beigi,et al.  Interface-induced polarization and inhibition of ferroelectricity in epitaxial SrTiO₃/Si. , 2010, Physical review letters.

[35]  Catherine Dubourdieu,et al.  Strain Relaxation in Single Crystal SrTiO3 Grown on Si (001) by Molecular Beam Epitaxy , 2012 .

[36]  Stephen Jesse,et al.  Band excitation in scanning probe microscopy: sines of change , 2011 .

[37]  Xiaoqing Pan,et al.  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures , 2011, 1103.4419.

[38]  G. Saint-Girons,et al.  Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application , 2011 .

[39]  A Gloter,et al.  Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. , 2012, Nano letters.

[40]  C. M. Folkman,et al.  Enhancement of Ferroelectric Polarization Stability by Interface Engineering , 2012, Advanced materials.

[41]  D. Tenne,et al.  Ferroelectricity in Ultrathin Strained BaTiO 3 Films : Probing the Size Effect by Ultraviolet Raman Spectroscopy , 2015 .